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Abstract: In the vision of Physical Internet there is no central authority that regulates decision 

making and asset use, the decision making is decentralized to make logistics self-organizing. A 

theoretical downside of decentralization is reduction of system performance due to lack of 

system overview leading to sub-optimal decisions. This research shows that the system 

performance is not significantly reduced when making decentralized decisions in a trucking 

network on small problem instances. Furthermore, the theoretical advantages of decentralized 

control compared to centralized are evaluated with the practical implementation. 
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1 Central and decentral control structures in logistics 

The advancements in digitalization and automation within transportation and logistics are 

creating new opportunities for organizing supply chains. Real-time connectivity and improved 

data sharing allow for innovative decision-making methods that can alter the control structure 

of logistics operations. More (autonomous) data-driven decision-making can be applied in 

various control structures, including centralized coordination (control tower approach) and 

decentralized coordination (self-organizing approach). These advancements lead to new 

opportunities for transport companies to improve methods of scheduling assets in daily practice, 

reducing inefficiencies in their operations and reducing costs and energy or fuel use. The 

question at hand is which methods of governing fleets of vehicles and optimizing transport 

scheduling are most suited to real world transport problems and most effective in decision 

support in transport operations.   

Centralized control structures, known as the control tower approach, involve one party 

collecting and analyzing data to make optimal operational decisions that are communicated to 

parties in the logistics chain. This approach has the potential to optimize performance at the 

system level, placing the interests of the chain above individual interests, and standardizing 

communication through one system. On the other hand, a decentralized control structure is 

characterized by each unit in the logistics chain making independent decisions (self-

organization) based on local intelligence and autonomy, with the goal of achieving more 

flexible operations or allowing for prompt rescheduling. Next to increased autonomy, there can 

also be an advantage in data governance, as autonomy on vehicle level enables a situation where 

specific vehicle and driver data does not need to be shared and only communication on which 

https://www.etp-logistics.eu/alice-physical-internet-roadmap-released/
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orders to transport is required. Physical Internet is a concept that aims to create a global logistics 

network that is more efficient, flexible, resilient, and sustainable by integrating these two 

approaches.  

This work focusses on specific on one decentral and one central approach, where most likely a 

hybrid form with collaboration between centralized and decentralized logistics is necessary to 

get to a functioning Physical Internet. A hybrid form allows for the efficient use of resources, 

improved flexibility, and increased resilience and sustainability in the logistics network (Quak 

et al., 2018) and as such, a hybrid approach could combine the advantages of both control 

methods. An example of a hybrid approach is developed by Phillipson (2015).    

To allow for effective decision-making and coordination across the Physical Internet, it is 

important to create proper control structures for the problem at hand. In the study Hopman et 

al. (2022), a framework was developed to examine the trade-offs and conditions that are most 

appropriate for different control structures, from centralized to decentralized. Their research 

suggests a hybrid approach to enhance the collaboration between centralized and decentralized 

logistics. This paper focusses on the extremes and not on a hybrid approach by comparing 

decentral with central scheduling. In this study, we researched a real-life logistics problem of 

order scheduling, which resembles a combination of job shop scheduling and vehicle routing 

with time-window constraints. The theoretical benefits and drawbacks of both centralized and 

decentralized approaches are examined by practical experiments to discover and close the gap 

between theory and practice as discussed in section 4.  The three experiment data sets are real 

world data originating from a Dutch transport company. One of the main activities of this 

company is transporting deep sea containers by truck to and from multimodal terminals in the 

hinterland.  

Key contributions of this study are: 

1. The Talking Trucks problem (Pingen et al., 2022) is formulated with Mixed Integer 

Linear Programming to include the geographical component which was missing in the 

centralized Linear Programming control structure in the previous study (Karunakaran, 

2020). 

2. The solution of the exact, central method is compared with the solution from the 

decentral approach to evaluate the gap in optimality.   

 

Firstly in this paper, the background on comparing central and decentral control in transport 

planning problems and the specific case study is described. This is followed by a description 

of the approach of comparing control methods and the Mixed Integer Linear Program (MILP) 

formulation of the central planning problem. The problem has been solved for 3 instances. 

Section 4 describes the comparison to previous decentralized solutions from Pingen et al. 

(2022). Section 5 wraps up on the comparison of central and decentral scheduling methods.  

2 Background of self-organizing trucks 

In previous research by Pingen et al. (2022) on self-organizing trucks, decentralized planning 

results were compared to the planning of a human planner, a random assignment of orders to 

trucks, a greedy assignment, a reinforcement learning model, and a modified centralized control 

to obtain a good understanding of the performance of decentralized control. However, the 

central control method in this previous study included a modification to the problem to increase 

scalability: it was assumed that all trucks always start and end at their depot in between orders. 

As a result, subsequent orders with a start location close to the last end location were not 

explicitly considered to be executed in that order. This step was taken to reduce the problem 
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complexity, making it easier to solve the linear planning problem. However, in order to make 

a better and more equal comparison between the performance of centralized and decentralized 

control on the same problem, this study examines a centralized control approach that does take 

the geographical component into account. 

2.1 Centralized versus decentralized control 

To choose the appropriate control method, sufficient knowledge about the constraints of the 

application and how the different control methods align with these is crucial. A centralized 

control method, using exact methods, is likely to require more computational time to find a 

solution than a decentralized control method, as the scheduling problem is NP-hard and 

decentralizing the decision making is a way of batching the problem to smaller subproblems 

and reduces the required computational effort, as, for example, shown by Lalla-Ruiz and Voß 

(2016). Therefore, a decentralized control method is better suited for dynamic situations where 

quickly generating new plans after disturbances is crucial. However, a decentralized approach 

may not necessarily lead to an optimal solution. Pingen et al. (2022) briefly discuss the 

theoretical advantages and disadvantages of a centralized solution for the Talking Trucks 

problem. Differences include the scalability of problems that can be solved, dealing with 

heterogeneous agents with different preferences or limitations, and the quality of the solution.  

 

Using heuristics, a centralized method can be sped up to reach a suboptimal solution; an 

example of this is dividing the problem into sub-problems to solve them in a limited time. This 

example can already be considered decentralization, but from a centralized perspective with 

global information. On the other hand, a possible disadvantage of the decentralized approach is 

that the obtained solutions may not be optimal, as decisions are based on a limited set of local 

information.  

 

In a decentralized method, each agent has its own decision logic to optimize its decisions in the 

planning process, before communication and coordination with other agents takes place. In this 

logic, the individual preferences of an agent can be processed, and the logic can be different for 

each agent or uniform for all agents. As the agents do not necessarily share all information with 

each other, a decentralized control method can relatively easily lead to a local optimum for the 

system, and therefore not reach the global optimum. Depending on the problem and the 

intended objectives, different strategies and heuristics in the individual decision logic of the 

agents can have an effect on the speed of the planning process and the quality of the solutions. 

In this research, we further examine the quality of solutions of the previously developed 

decentralized method of Talking Trucks, by comparing it with the outcomes of the central 

control approach in this research. The aim is to better understand the differences between 

central and decentralized methods. 

3 Comparing self-organizing with exact central truck planning 
To gain insight in the optimality gap between the decentralized talking trucks solutions and the 

optimal solution for the provided variant of the Vehicle Routing Problem with Time Windows 

(VRPTW) we have formulated an MILP for this problem and used exact methods to get to an 

optimal solution. The problem formulation can be found in section 3.1. We have used the SCIP-

solver (Bestuzheva et al., 2021) to get to the optimal solution. Formulating and implementing 

the exact problem from a central planning perspective provided us with insight into what is 

needed to develop such an approach for a real world trucking company. Given this insight from 

implementation and additionally the analysis of results from experiments allowed us to compare 
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the requirements and performance of central planning with self-organizing decentral planning. 

This comparison is provided in the second part of the results section.  

3.1 Talking Trucks problem formulation 

In this section, the mixed integer linear programming (MILP) formulation for the Talking 

Trucks problem is provided. The problem is to assign container transport orders to available 

trucks in the fleet. Container transport orders include picking up a deep sea container, which 

we for the scope of this paper consider to be a full truck load, driving a certain route to one or 

multiple stops. Stops can either be picking up a container (with or without trailer), live loading 

of a container or delivering a container. At pick-up, it can either be that the container is already 

loaded onto a trailer which the truck needs to couple, or that the truck needs to bring an empty 

trailer on which the container is loaded at arrival. Similarly, at delivery, the truck can end with 

or without an empty trailer. We call this the trailer state. To change trailer state between orders, 

we added so called “trailer state orders” in which a truck can (de)couple a trailer at a depot. We 

assume trailers are an infinite resource, they are always available and provide no planning 

constraints. The trailer state orders add travel time and distance to the schedule. The schedule 

is static and made one day ahead. 

 

Orders can have routes of multiple stops. However, for planning constraints, only the location 

and trailer state of the first and last stop are relevant, as well as the total travel time in between 

the first and last stop of an order. Therefore, this formulation assumes “flattened” orders, where 

orders only contain information about the first and last stop. The travel time between stops is 

combined into travel time from the first to the last stop, and the order of stops cannot be 

changed. Initially, each stop has a specific time window defining the first possible arrival time 

and the deadline before which the container must arrive at each stop. This time window at each 

stop and driving time in between stops define a condensed time window at the first stop for the 

“flattened order”. A visualization of this process is shown in Figure 2. 

  
Figure 1 Schematic example of a “flattened” order. Order 1 is the original order and Order 1’ 

is the flattened order. 

 

The orders need to be assigned to trucks. Hence, the problem definition includes a fleet of 

vehicles, where each vehicle has a start and end time of its shift and each vehicle starts and ends 

at a certain depot. All vehicles start without a trailer. The notation for this problem is given in 

Table 1. The combined decisions to be made are (a) which vehicle is going to transport which 

order (b) at which point in time.  

 
Table 1: Notation for the Mixed Integer Linear Program 

Notation Description 

𝒙𝒊,𝒋,𝒌 vehicle 𝑘 travels from order 𝑖 to order 𝑗; binary decision variable 
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𝒔𝒊,𝒌  arrival time of vehicle 𝑘 at order 𝑖; continuous decision variable 

𝑽  set of vehicles 

𝑪  set of orders 

𝑵  set of orders and depots 

𝒅𝒌
𝒔 , 𝒅𝒌

𝒆  start and end depot of vehicle 𝑘; 𝑑𝑘
𝑠 , 𝑑𝑘

𝑒 ∈ 𝑁 

𝒐𝒊  
total handling time of order 𝑖 

𝒑𝒊,𝒋  travel time from order 𝑖 to order 𝑗 

𝒕𝒊,𝒋 = 𝒐𝒊+𝒑𝒊,𝒋 total time between the start of order 𝑖 and the start of order 𝑗 

[𝒂𝒊, 𝒃𝒊] 
𝑎𝑖 is the earliest possible start time, and 𝑏𝑖 is the latest possible end time 

of order 𝑖 

[𝒆𝒌, 𝒇𝒌] 𝑒𝑘 is the start time of vehicle 𝑘, and  𝑓𝑘 is the end time of vehicle 𝑘 

𝑻𝑺𝒊
𝒔𝒕𝒂𝒓𝒕, 𝑻𝑺𝒊

𝒆𝒏𝒅 TSi
start is the trailer state at the start, respectively end (𝑇𝑆𝑖

𝑒𝑛𝑑), of order i  

 

3.1.1 Optimization objective 

In general, the Talking Trucks problem knows different objective functions, as the objective 

that best fits company goals can vary daily, given customer requirements and operational 

deviations. In this research, we want to compare our results with the results from Pingen et al. 

(2022), who have optimized with the goal to maximize the number of on-time deliveries and 

minimize the number of trucks used. In order to make the decentral decision making steer 

towards the system objective (from a company perspective), Pingen et al (2022) have translated 

the system objective into objectives for individual trucks. For this MILP, we have defined the 

following two objective functions to align with the company objective. Having multiple 

objectives makes the formulation proposed in this paper a multi-criteria problem, for which, in 

theory, a mixed, weighed, objective can be calibrated to obtain the best required result 

(Jozefowiez et al., 2008). In this research no extensive search to best fit multiple criteria has 

been done. The the effects of two different objectives, providing two different scenarios, have 

been analyzed.  

 

The objective of the first scenario is to minimize the arrival time at the end of day depot, such 

that the working time of the drivers left at the end of the day is maximized. This can be seen as 

slack in the schedule to account for delays and disruptions. The second scenario has as objective 

to maximize occupancy  (ratio of the effective driving time with load and the total available 

time of a truck) and in parallel minimize the total travel time, in other words: to minimize the 

driving time between orders, without load. Both scenarios aim to schedule all trucks as 

efficiently as possible by maximizing asset usage, which is in line with the company goals. 

Being on time is provided as hard constraint as described in the next section.  

 

Objective per scenario: 

1. Minimize arrival time at the end of service, depot:   

min ∑k∈V 𝑠𝑑𝑘
𝑒 ,𝑘 

2. Maximize truck occupancy and minimize travel time:   

 max
 

 ∑
∑ ∑ 𝑥𝑖,𝑗,𝑘.𝑜𝑖,𝑗∈𝑁𝑖∈𝑁

𝑓𝑘−𝑒𝑘
𝑘∈𝑉  −  ∑ ∑ ∑ 𝑥𝑖,𝑗,𝑘. 𝑝𝑖,𝑗𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉   
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3.1.2 Constraints 

The constraints for the planning problem are given below. They all follow from the problem 

description as described before and are generic for a VRPTW. Note that the travel time 

constraint (5.) for the start time of subsequent order was initially not linear, but has been 

linearized using the big-M method (Dantzig, 1948).  

 

1. Pick each order exactly once:  ∑ ∑ 𝑥𝑖,𝑗,𝑘 = 1,𝑗∈𝐶𝑘∈𝑉    ∀𝑖 ∈ 𝐶 

2. Each vehicle starts at its start depot:  ∑ 𝑥𝑑𝑘
𝑠 ,𝑗,𝑘 = 1𝑗∈𝑁 ,  ∀𝑘 ∈ 𝑉 

3. Each vehicle ends at its end depot:  ∑ 𝑥𝑖,𝑑𝑘
𝑒 ,𝑘 = 1𝑖∈𝑁 ,  ∀𝑘 ∈ 𝑉 

4. Orders are sequential:   ∑ 𝑥𝑖,ℎ,𝑘 − ∑ 𝑥ℎ,𝑗,𝑘𝑗∈𝑁 = 0𝑖∈𝑁 , ∀ℎ ∈ 𝐶, ∀𝑘 ∈ 𝑉 

5. Linearized travel time constraint: 𝑠𝑖,𝑘 + 𝑡𝑖,𝑗 − 𝑀(1 − 𝑥𝑖,𝑗,𝑘)≤ 𝑠𝑗,𝑘,  ∀𝑖, 𝑗 ∈ 𝑁 
          ∀𝑘 ∈ 𝑉 

6. Account for time windows:   𝑎𝑖 ≤ 𝑠𝑖,𝑘 ≤ 𝑏𝑖,   ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉 
7. Account for working hours:  𝑠𝑖,𝑘 + 𝑡𝑖,𝑑𝑘

𝑒 − 𝑀(1 − 𝑥𝑖,𝑑𝑘
𝑒 ,𝑘) ≤ 𝑓𝑘,   

𝑒𝑘 ≤ 𝑠𝑖,𝑘 + 𝑀(1 − 𝑥𝑑𝑘
𝑠 ,𝑖,𝑘) ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉 

8. Trailer state constraint:  𝑥𝑖,𝑗,𝑘(𝑇𝑆𝑖
𝑒𝑛𝑑 −  𝑇𝑆𝑗

𝑠𝑡𝑎𝑟𝑡)= 0,  ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉 
 

Two scenarios, each with one of the two objective functions and these constraints, have been 

implemented and experimented on using three test cases. The results are presented in the next 

section. 

4 Experiments 

4.1 Numerical results 
In this study, we have optimized the MILP of the Talking Trucks problem using the two 

previously mentioned variants of the objective function. The first objective function aims to 

minimize the total arrival time at the depot at the end of the day. This scenario is referred to as 

CENTR1. In addition, we have optimized the MILP with an objective function that combines 

the maximization of vehicle occupancy and minimization of travel time. This scenario is 

referred to as CENTR2. In the experiments, we will compare the results of optimizing these 

two objective functions with the results of the decentralized planning technique from Pingen et 

al. (2022), as well as the planning results of the human planner Van Berkel, as described in 

Pingen et al. (2022). Each planning technique – decentralized (DECENTR), human (HUMAN), 

and the central variants (CENTR1/CENTR2) – has been applied to three different days. 

Specifically, we have applied these techniques to plan a subset of the orders from Dutch 

logistics company Van Berkel on September 24th, October 1st, and October 8th, 2021 

(experiment 1, 2, and 3, respectively). Experiment 1 has relatively short time windows for 

orders (15 minutes), while experiment 3 has relatively long time windows (up to 12 hours). 

Moreover, there are differences in truck properties between the different experiments; in 

experiments 1 and 2, the trucks are relatively homogeneous in terms of working hours, while 

they are more heterogeneous in experiment 3. The size of the analyzed problems is up to 10 

trucks and up to 40 orders per instance. With these relatively small instances the SCIP-solver 

took around 3 minutes to find an optimal solution on a regular notebook (i7-8650U 1.90GHz) 

for scenario CENTR1, where the CENTR2 scenario finds solutions within around 5 minutes. 

This was on these small instances already significantly more than the matter of seconds the 

decentral approach required (Pingen et al., 2022).  
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Note in the results below that the human planner outperforms the exact method. This is due to 

the fact that this planner breaks some of the constraints to achieve a better solution, but does 

not abide by the rules of the problem which the algorithms have to adhere to. This human 

flexibility in adherence to the constraints can be observed in the negative waiting time in the 

Human planner scenario for experiment 2 in Table 3. 

 

The most relevant outcomes are: 

• In experiment 3, the driving time with and without load are equal for the decentral and 

central approaches, in other words, the decentral solution is equal to the optimal solution 

found in both exact central scenarios, see Table 2;  

• In experiment 1, both exact central approaches found a solution with 32 km less driving 

time without load, which means a reduction of 9% of the total driven 373 kilometers in 

the decentral solution. In the second experiment, the exact central solutions are 5% 

lower in total km compared to the decentral solution, see Table 2; 

• The distribution of waiting time before the first order (start of day), in between orders 

(middle of day) and at the end of day is quite different for the various solutions, see 

table 3. This depends on the timing of certain orders and this is influenced by the 

difference in objective functions.  

  
Table 2: Total number of driven kilometers per experiment 

 With load Without load 

Exp. DEC. CEN.1 CEN.2 HUM. DEC. CEN.1 CEN.2 HUM. 

1 280.45 280.45 280.45 263.27 93.82 61.68 61.68 110.64 

2 910.18 910.18 910.18 900.76 389.31 326.83 324.52 432.30 

3 873.61 873.61 873.61 858.01 93.63 93.63 93.63 93.63 

 

The results show that CENTR1 and CENTR2 get to similar, but slightly deviating solutions. 

This is to be expected, given the same planning problem with objective functions that have a 

similar goal of maximizing asset use, and hard constraints such as delivering all orders on time. 

The number of driven kilometers with load is equal for all scenarios as the same transport orders 

have been executed. The interesting comparison is on the number of kilometers driven between 

transport orders, without load, where the exact method performs up to 30% better than the 

decentral approach in experiment 1.  
 

Table 3: Average time of waiting per vehicle (in hours). 

 Start of day During the day 

Exp. DEC. CEN.1 CEN.2 HUM. DEC. CEN.1 CEN.2 HUM. 

1 2.31 0.36 0.74 1.49 0.23 1.83 0.50 0.45 

2 2.44 0.12 0.34 1.24 0.35 1.30 1.15 -0.20* 

3 2.27 0.5 0.5 1.06 0.08 0.0 0.0 0.0 
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 End of the day 

Exp. DEC. CEN.1 CEN.2 HUM. 

1 7.37 6.91 7.78 7.17 

2 2.37 4.13 4.09 4.40 

3 3.62 4.58 4.58 3.68 

 
Table 4: Problem size and computation time per scenario in minutes on a regular notebook (i7-8650U 

1.90GHz). In comparison the human planner required 1 day of work.   

Exp. # orders # trucks DEC. CEN.1 CEN.2 

1 38 8 < 1 1 3 

2 37 9 < 1 3 5 

3 41 9 < 1 6 8 

 

4.2 Central and decentral control in theory compared to practical experiments 

Implementing, experimenting and analyzing the VRPTW with decentral and central based 

solution algorithms provides a base to evaluate advantages and disadvantages of the different 

approaches. There are four points to compare the central and decentral method on: solution 

time, scalability, distribution of the computation and distribution of the data.  

The first point is the time it takes to find an optimal solution. For the exact central algorithm, 

this is the time it takes to find a globally optimal solution. For the decentral algorithm, this can 

also be a local optimum. In our experiments, we have seen that the decentral algorithm took 

less than 10 seconds to find an optimum, while the solution time for the central algorithm ranged 

from 2 to 15 minutes. In our current formulation, both methods are very fast compared to the 

human planner, who needs 6-8 hours to get a schedule.  

With more decision variables, the exact method computation time scales exponentially due to 

the fact that the problem is NP-hard. The decentral method computation time scales linearly. 

This means that the bigger the problem, the bigger the gap in solution time between the 

decentral and exact method, in favor of the decentral solution method. The solution time is also 

influenced by the size of the solution space: the central solution method needs significantly less 

time in experiment 1 compared to experiment 2 and 3 (see Table 4). This is due to the tighter 

time windows in experiment 1, which lead to a smaller search space. 

Another comparison for the different solution methods is the distribution of the computation of 

the schedule. In the exact method, computation is done on one machine, while the computation 

of the decentral method is distributed to the machines of each agent. This means that the 

computation demands of each machine is smaller in the decentral method, because the decentral 

method only explores the neighborhoods of each agent. The central method can search the entire 
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solution space, which means that the computation demands can be heavier. The heavier demand 

in computation time by the central method is also observed in the experiments. 

Lastly, the distribution of the data is different for the two methods. For the central method, the 

data is stored in one location in order for the algorithm to take everything into account. In the 

decentral solution method, a major part of the data is stored on agent-basis and not centrally. 

Especially the vehicle and driver specific data are only known to the vehicle and do not need to 

be shared with other entities. The information on the available transport orders is still provided 

to the trucks via a central information point, in this case the transport company. The resulting 

individual truck schedules can be shared to an overseeing entity such as the truck company, 

however, in theory, this is not necessary. The distribution of data is a relevant factor in 

developing real world truck scheduling methods. For companies the location and storage of the 

data can be a sensitive topic, because the transport data is commercial sensitive information for 

the transport company, but mainly for the concerning shippers. The latter is because production 

volumes and product launches are trade sensitive information. Transport companies therefore 

need to be careful in sharing transport data. The decentral approach provides a method of 

distributing data in a different manner than the central approach and provides opportunities for 

transport companies to collaborate in transport planning without giving complete insight in 

company data.  

5 Conclusions and recommendations 

5.1 Conclusions 
The implemented MILP solved with the SCIP-solver leads to optimal solutions for the provided 

scenarios when given enough runtime. As expected, the solutions show equal and better results 

on the performance indicators compared to results from the same experiments with the decentral 

Talking Trucks approach. The main takeaway is that for these, rather small, experiments, the 

optimality gap between the decentral solution and optimal solution is small, but is present. 

These experiments already show that it depends on the specific experiment whether the 

decentral method approaches the exact method optimum. There is an exact match in results in 

experiment 3, but in experiment 1 the central method gets to a solution with 30 km less empty 

driven kilometers compared to the decentral scheduling solution, which is a 10% reduction in 

driven kilometers for this day. 

 

Both the decentral approach and the exact central method are manners to create schedules for 

these small problem cases in a reasonable amount of time, especially compared to the time the 

human planner needs to schedule all orders. The decentral approach wins from the exact 

methods on computation time, especially when looking at bigger instances where the decentral 

approach scales linearly in computation speed compared to the exponential growing 

computation requirement of exact methods.  

 

Next to scalability of the problem size, the decentral approach also has other organizational and 

implementational advantages compared to the exact central approach. Truck and truck driver 

information do not have to be shared with other entities, only preferences on available transport 

orders are shared and negotiated. This allows for new ways of collaborating and (self) 

organizing logistic structures.  

5.2 Recommendations 
Given the small experiment instances analyzed in this research, it would be interesting to extend 

the comparison to larger and more varying datasets, because the used experiments are relatively 
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small. The main questions to verify on larger instances would be to compare scalability of exact 

methods compared to decentral approaches to be able to draw further conclusions on the 

instances for which exact methods are most relevant and in which situations decentral or hybrid 

forms are a better option.  

 

In this research we have approached the static problem with a one day ahead scheduling, where 

in the logistic practice a real time rescheduling method, which really requires high computation 

speed, could benefit from a fast, decentral approach. Researching applicability and performance 

of decentral methods in such a setting requires attention.  

 

Additionally, the logistic planning problems in practice have broader scopes than single 

company truck fleets. Looking into multimodal, or even synchromodal, planning problems and 

especially situations of multi-fleet or multi-company problems could provide insight in 

advantages and benefits of the decentral planning approach and get logistic systems closer to 

the Physical Internet. This would contribute to the goal of making our transport systems more 

efficient and sustainable.  
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