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Motivation

Set of logistics companies deliver commodities
to customers across a geographical region
through Physical Internet Enabled
Hyperconnected Hub Networks.

They are interested in devising commodity flow
routes that are efficient in nominal situations
and resilient under disruptions.

In the absence of disruptions, the route
follows the minimum cost-path to minimize
the operational expenses.

To be resilient under disruptions, several
works employed strategies such as network
topology optimization and dynamic
commodity routing.

These approaches work well only in networks
with limited degree of hyperconnectivity -
fails to scale to dense networks and the entire
flow remains to be affected by disruptions.

To reduce the proportion of flow impacted by
disruptions, we can strategically route
commodities in pre-disruption phase.
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Resilient Flow Route Generation

* Underlying premise - When disruption occurs and a path is rendered unavailable, only a
fraction of commodity delivery is affected

* We present two algorithms to generate such Resilience-Optimized commodity delivery
routes in Hyperconnected Networks

[ Basic Resilience-Optimized } Adaptive Resilience-Optimized

“Employs the principle of distributing the commodity flow across multiple
edge-disjoint paths” [1]

Source: [1] Kulkarni, O., Cohen, Y. M., Dahan, M. & Montreuil, B., 2021. Resilient hyperconnected logistics hub network design., 8th International Physical Internet Conference
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Basic Resilience-Optimized Route Generation Algorithm

Distribute commodity flows across multiple edge-disjoint paths between each O-D pair

. Input Sets and Data Parameters Source-to-Hub Arcs €——> Hub-to-Hub Arcs =« — . = > Hub-to-Target Arcs

. S : Set of locations where demand originates
g O # Minimum cost path # Path 2

. T : Set of locations where commodities are delivered
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o B : Set of logistics companies (or) brands indexed by 'b p 1
!

e Py S P : Setof O-D pairs of each brand 'b’ Combinatorial Source @ ;
*  J : Setoflogistics hubs indexed by 'h’ Algorithm

« AC (SUTUIF)?: Setof transportation arcs indexed by (i, j)

\'\;)V; Target @
A

. C ijj : Costestimates on transportation arc (i, )

. M;;] € [0,100] : Maximum proportion of each O-D pair flow 'p’ on each arc (i, j)

@

The aim here is......
“To devise k,, = [100/M;j] edge-disjoint paths for each O-D pair”
“However, in practice, arc capacity for each O-D

“Compute these independently for each O-D pair” pair is not sufficient”

A company or brand has arc restriction for all its O-D pairs together because N [ ADAPTIVE RESILIENCE-OPTIMIZED

of the associated contracts with truckers for their travel on the arc

“NOT CAPTURED IN THIS MODEL"
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Adaptive Resilience-Optimized Route Generation Algorithm

“Additional capacity constraint on each arc based on brand’s flow”

. Input Sets and Data Parameters oo > Source-to-Hub Arcs -+ =->» Hub-to-Target Arcs
. § : Set of locations where demand originates
. T : Set of locations where commodities are delivered

# Minimum cost path #
. P € § X T : Setof Origin-Destination Pairs indexed by 'p’ . Path 2

M;'f — 50% from Sto T”

. B : Set of logistics companies (or) brands indexed by ‘b’ .
“4 units to be sent
. Py S P : Setof O-D pairs of each brand ‘b’ @

. H : Set of logistics hubs indexed by 'h’ 2 ;
. A CS (SUT UIF)?: Setof transportation arcs /
. . Source :

. C;j : Costestimates on transportation arc (i, j) Combinatorial

L Algorithm
. D, : Demand of O-D pair 'p @
* Dy =Y,p, Dp: Totaldemandofbrand’p’ W e ANE e SR T
. M:,’j € [0,100] : Maximum proportion of each O-D pair 'p’ on each arc ke A Tlarget

. N;;j € [0,100] : Maximum proportion of brand ‘b’ flow on each arc

=\ B
“Independence of devising commodity flows present at
brand level but not for each O-D pair separately ”
Additional capacity restriction on each transportation arc
Process the O-D pairs that belong to a brand leads to distribution of commodity flow to even larger
in decreasing order of their associated number of edge-disjoint paths

demand and process the brand in decreasing

order of associated demand “MORE RESILIENT PATHS”

6/10



Case Study Results & Discussion

Design commodity flow routes for finished vehicle logistics from production plants to
dealerships across US Southeast through hyperconnected hub network employing
proposed algorithms

DR ? -

@ Dealership @ ProductionPlant @ Logistics Hub s Hub-Hub Edges

7/10 Source: [2] Grover, N., Shaikh, S. J., Faugere, L. & Montreuil, B., 2023. Surfing the Physical Internet with Hyperconnected Logistics Networks. 9th International Physical Internet Conference



Case Study Results & Discussion

[ Efficiency Comparison ] [ Resiliency Comparison ]
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* Efficiency metric:
® EffiCiency-optimiZEd: Distribution of . Efficiency-Optimized:
Path Travel Time * Path Flow flow for all O-D pairs in network is highly « Distribution of flow is highly concentrated on a
(Min—cost Path Travel Time) * (Min—cost Path Flow) concentrated on a fewer number of few hubs with almost 40% flowing through 1 hub.
OD paths .
critical edges.
* On an average higher proportion of O-D flow is
* Basic Resilience-Optimized: The induced travel time of all O-D * Basic Resilience-Optimized: ~ The likely to be affected under worst case hub

proportion of flow is well-distributed disruptions.

< 20% of effici timi te(s).
pairs is increased by < 20% of efficiency optimized route(s) across the edges and any disruption in

- Adaptive Resilience-Optimized: ~13% of O-D pairs show these edges affects a lesser proportion * In Adaptive Resilience-Optimized, despite achieving
increase by >20% and 3% of O-D pairs show increase by >40% of overall flow. higZer rfefsilience under edge disruptions it introduces a
. trade-off.
on travel time. * In Adaptive Resilience-Optimized, flow
is evenly distributed to multiple edges “Selected edge-disjoint paths exhibit more
Prioritizing O-D pairs with higher flows within each enabling a major proportion of flow to intersections of nodes, rendering the system less
brand, the O-D pairs with lower flow have to take meet service time targets even under resilient under hub disruptions compared to basic-

8/10 considerably longer routes such worst-case disruptions. resilience optimized”



Future Work & Research

1.
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These algorithms, although scalable, are still heuristic ways to devise resilience-optimized
commodity delivery routes. The first avenue is to explore optimization-based modeling
framework and devise exact solution approaches for it.

Instead of devising edge-disjoint commodity delivery paths, non-edge-disjoint paths can
be computed

* Although less capable of sustaining disruptions, is indeed more efficient in nominal
operating conditions.

* This will require exponential-sized optimization models and sophisticated solution
techniques such as column generation to devise good quality routes.

Finally, regarding evaluation of such routes, a more comprehensive set of disruption
experiments can be conducted.

* This could involve simulating other types of disruption scenarios such as multiple
edge and hub disruptions, localized disruptions, and adversarial type of disruptions.

Devising comprehensive cost function considering greenhouse gas emissions and compare
between resilient and non-resilient algorithms in presence and absence of disruptions.



Any comments, questions and suggestions are most welcome

Thank You'!
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