

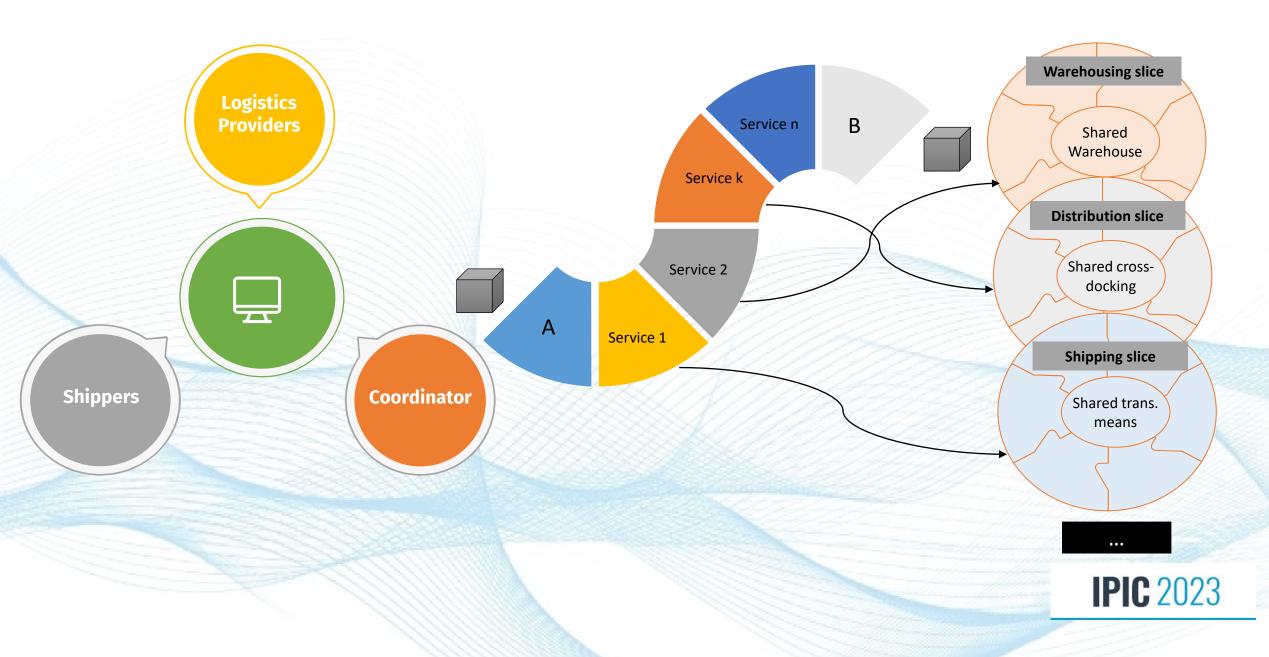
IPIC 2023

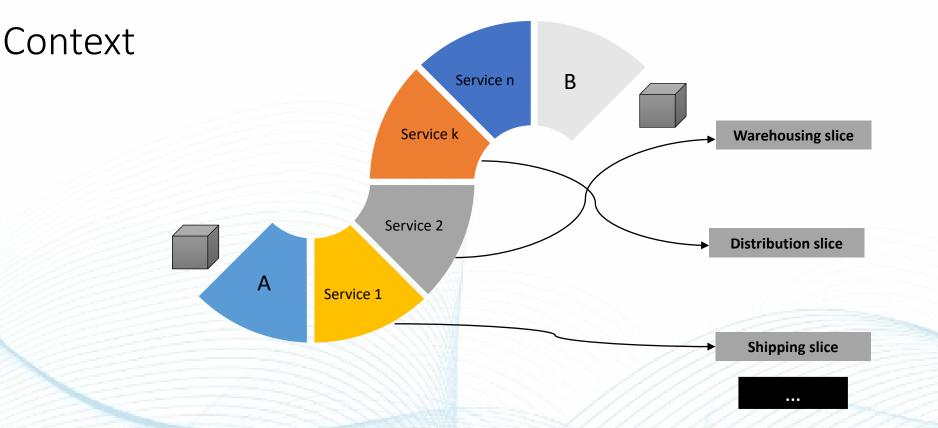
9th International Physical Internet Conference June 13-15, 2023 Athens, Greece

Routing and network-slicing-based protocols for the Physical Internet network

By Fatima-Ezzahra Achamrah, Mariam Lafkihi & Eric Ballot

June 14, 2023

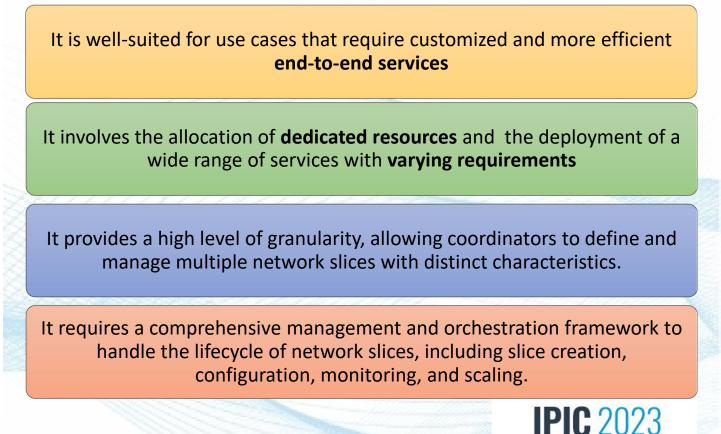


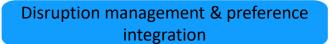


Expanding the logistics Scope

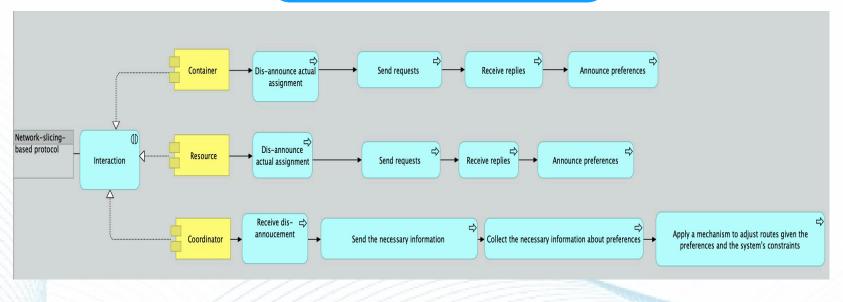
Context

<u>Containers</u> or shipments have to be <u>allocated</u> to resources and delivered to customers while guaranteeing an end-to-end services, considering route-constraints (e.g., capacity, costs, lead time), and ever **changing** environments, i.e., <u>disruptions</u> (e.g., emergency or cancelled orders, hub unserviceability, transportation means unavailability).


<u>Resources</u> and <u>shipments</u> are considered to be able to compute decisions within a legal framework: they are supposed to coordinate with other entities in the network <u>about routes and loads allocation</u> based on <u>actual</u> <u>context</u> and <u>local knowledge (known state of the system); centralized</u> decision-making can no longer be applied.


Network-Slicing-Based Protocol

Network slicing allows the creation of multiple virtual networks with a common physical infrastructure, each optimized for specific services or user groups, aiming at providing customized and more efficient end-to-end services and allocating the network cost to the different deployed slices.


	management slice	Container H slice		Container st slice	orage	Container shi slice	pment	Communicat slice	ion	
rvice laye	r]				
ma	Order anagement	Hand	ling	Stor	rage	Shipme	nt	Communica	tion	 0
ysical laye	er									
	Contain	er	Warehousi resources		Communicatio	n devices	Other	ohysical compone	nts	

Network-Slicing-Based Protocol

2 Allocating resources Slice in a slice creation MCDM and assignment algorithms while Based on the minimizing service layer logistics costs requirements and CO2 emission

Examples of reactive assignment algorithms designed to offer good-quality solutions with simple computational capabilities.

Algorithm 1 Assignment algorithm in normal scenarios	Alg
1: Assign each downstream location (i.e., destinations) to a hub > using the clustering algorithm	1:
2: Load orders into best-fit containers ▷ using containerization protocol described in Sarrai et al (2014a)	0
3: $HubList \leftarrow$ List of hubs	2:
4: ContainerList \leftarrow List of containers	3:
5: VehicleList \leftarrow List of vehicles	
6: $V_k \leftarrow$ Maximum volume capacity of vehicle k	4:
7: $W_k \leftarrow$ Maximum weight capacity of vehicle k	-
8: for each $h \in HubList$ do	5: •
9: for each $k \in VehicleList$ do	6:]
10: $L^k \leftarrow$ New empty list of containers to be transported by k	
11: for each container p leaving h do	7: 1
12: $v \leftarrow \text{Volume of container } p$	
13: $w \leftarrow \text{Weight of container } p$	
14: if $V_k \ge v$ and $W_k \ge w$ then	8:
15: Append p to L^k	
16: $V_k \leftarrow V_k - v$	
17: $W_k \leftarrow W_k - w$	9:
18: ContainerList \leftarrow removing container p from ContainerList	
19: end if	10:
20: end for state $L^k \leftarrow$ construct and optimize the sequence of destinations to visit using neighborhood search	11:
operators ▷ refer to (Dumez et al., 2021)	11:
21: end for	12:
22: end for	
23: Return constructed routes with the corresponding total cost and arrival time	13:

gorithm 2 TOPSIS's steps Acquire each alternative i and criterion jConstruct normalized decision matrix: $-\frac{x_{ij}}{\sqrt{\sum x_{ij}^2}}$ with r_{ij} and x_{ij} are original and normalized score of decision matrix resp. $r_{ij} \leftarrow \cdot$ Construct the weighted normalized decision matrix: $v_{ij} \leftarrow w_i r_{ij}$ with w_i is the weight for j criterion Determine the positive ideal and negative ideal solutions Positive ideal solution: $A^* \leftarrow \{v_1^*, ..., v_n^*\}$ with $v_i^* = \{max(v_{ij}), ifj \in J; min(v_{ij}), if \in J'\}$ ▷ refer to (Hwang and Yoon, 1981; Behzadian et al., 2012) for further details Negative ideal solution: $A' \leftarrow \{v'_1, ..., v'_n\}$ with $v'_i = \{min(v_{ij}), ifj \in J; max(v_{ij}), if \in J'\}$ ▷ refer to (Hwang and Yoon, 1981; Behzadian et al., 2012) for further details Calculate the separation measure of each alternative: Separation measure from positive ideal alternative: $S_i^* \leftarrow \sqrt{\sum (v_i^* - v_{ij})^2}$ Separation measure from negative ideal alternative: $S'_i \leftarrow \sqrt{\sum (v'_i - v_{ij})^2}$ Calculate the relative closeness to the ideal solution $C_i^* : C_i^* \leftarrow S_i^{\prime} / (S_i^* + S_i^{\prime})$ Select the alternative with C_i^* closest to 1

\mathbf{A}	lgorithm 3 Assignment algorithm with transshipment
1:	Assign each downstream location (i.e., destinations) to a hub
2:	Load orders into best-fit containers based on q^{a*} \triangleright using containerization protocol described in Sarraj et all (2014s)
3:	Assign each container to a hub > using the clustering algorithm
	$HubList \leftarrow$ List of hubs
5:	$HubListPK \leftarrow$ List of hubs for the pickup and delivery
6:	$ContainerList \leftarrow$ List of containers
7:	$VehicleList \leftarrow List of vehicles$
8:	$V_k \leftarrow Maximum volume capacity of vehicle k$
9:	$W_k \leftarrow Maximum$ weight capacity of vehicle k
10:	for each $h \in HubList$ do
11:	for each $k \in VehicleList$ do
12:	$L^k \leftarrow$ New empty list of containers to be transported by k
13:	$L_{pq}^k \leftarrow$ New empty list of hubs to be visited for pickup and delivery by k
14:	$index_{h'} \leftarrow index$ of the hub(s) where orders will be picked from, and
15:	orders will delivered to, if applicable HubListPK
16:	for each container p leaving h do
17:	$v^* \leftarrow$ Volume of container p
18:	$w^* \leftarrow \text{Weight of container } p$
19:	
20:	Append p to L^k
21:	Append $index_{h'}$ to L_{pa}^k
22:	
23:	$W_k \leftarrow W_k - w^*$
24:	$ContainerList \leftarrow$ removing container p from $ContainerList$
25:	end if
26:	
27:	end for state $L^k \leftarrow$ construct and optimize the sequence of hubs and destinations to visit
28:	using neighborhood search operators \triangleright refer to (Dumez et al., 2021)
29:	end for
30:	Return constructed routes with the corresponding total cost and arrival time

Experiments

Using a muli agent simulation, and data from major French retail chains Carrefour and Casino and their 106 largest suppliers,

- 303 plants, 57 warehouses, and 58 distribution centers across France.
- Three products: liquids, groceries, and personal and home care.
- 2,582,692 full pallets are routed.
- 211,167 orders of 702 different products, accounting for approximately 20% of French FMCG market share for the considered product families.

Network

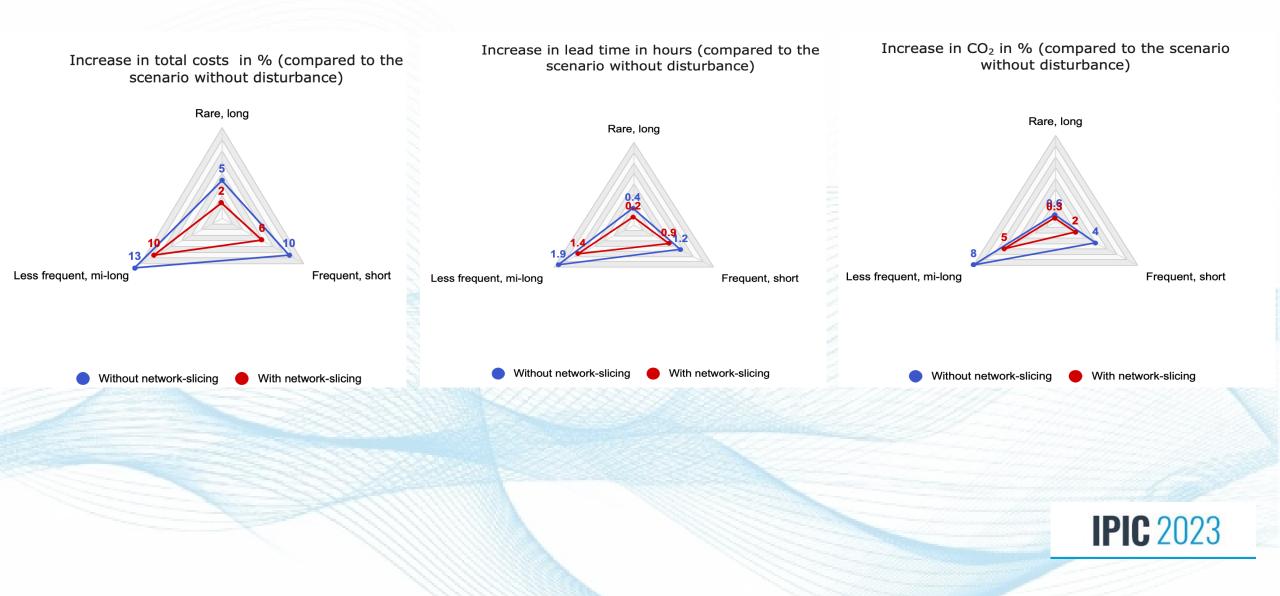
Assessing the performance of the
protocols

	Network	Olenio	tions Profiles	Preferences	Statistics	
			🛞 llub 🙁 Carrier	(i) Customer		
11111	V Drastviceability		Supply		Canceled orde	-
	Failure preb.	0.0	Passivisite prob	0.0	Pessinitie pot.	
	Repair preb.	0.0	Optimistic prot.	0.0	Optimistic prob.	
/////	Repair fire	0.0	Anival time	0.0	Cancellation free	
1 1 1 1 1	IT freeseosy orders		Trans. means	unevaluality	Ended stavala	8- 7 7
Diamentian mea	f :1	0.0	Peministic prob	0.0	Pezzimistic prot.	
Disruption pro	mes	0.0	Optimistic peak.	0.0	Optimietic pres-	
1 1 1 1 1	Croixs Preparation	0.0	Availability time	0.0	Availability time	
14///						

	Value	Charges to define according to contracts, if applicable	Value
Daily prosity	0.0	Transabilitment changes.	0.0
Cancellation charges	0.0	Trate, means sharing charges	0.0
Energency orders charges	0.0	There, means leaving charges	0.0

Clock

Node Name 🛛 🖉 Linke


Experiments : Simplified Example

- A 7-day simulation, 10 plants, 10 warehouses, 10 carriers (trains and trucks), 1000 orders of 5 different products to ship, and only storing and shipping services.
- We evaluate the performance of the proposed protocols in absence and presence of disturbance, namely, hub resource breakdown.
- We evaluate the performance of the proposed protocols in presence of disturbance, namely, hub breakdown. We consider long, rare ; less frequent, mi-long and frequent, short disturbance profiles.

#	Breakdown prob.	Repair prob.	Average dur. (hour)	Lost capacity of PI	Description
1	1%	30%	3.1	3%	Rare, very long
2	10%	70%	1.4	13%	Less frequent, mi-long
3	20%	90%	1.1	18%	Frequent, short

- The performance is evaluated using three key performance indicators, namely, increase in total cost (i.e., transportation and storage), in lead time, and CO₂ emissions.
- Two scenarios are evaluated:
 - Without network-slicing: locally optimizing resources allocation.
 - With network-slicing: optimizing resources allocation for all slices.

Experiments

Conclusions & Perspectives

- A network slicing-based protocol for more efficient resource allocation and management and to guide individual self-interested decisions toward a system-wide common goal.
- A dynamic and reactive protocol to consider various contexts, such as disturbing events, route constraints, and PI actors' preferences and local knowledge of the system's state.

- Future research should investigate the trade-offs in implementing logistics network slicing while considering decentralized protocol and managing disruptions.
- Investigate other classes of operational disruptions, but also tactical and strategic ones, along with reactive alternatives that have yet to be investigated.
- Generalize the scope to the case where multiple coordinators (i.e., platforms) provide communication and container delivery in and between several PI sub-networks.
- Generalize the scope to cover and compare on-demand and scheduled services;
- Capitalize on data collected, using the routing tables, to assist the disturbance management by using similarities and accurate predictions (e.g., reinforcement learning, transfer learning, or case and rule-based reasoning).

Expanding the logistics Scope