

IPIC 2023

9th International Physical Internet Conference June 13-15, 2023 Athens, Greece

Impact of Modular Containerization on Parcel Logistics Network

Sahrish Jaleel Shaikh, Nayeon Kim, Mumen Rababah, Benoit Montreuil, Jeffrey S. Smith

Corresponding author: <u>sahrish.shaikh@gatech.edu</u>

Expanding the logistics Scope

AUBURN

UNIVERSITY

Physical Internet

Center

Redefining Parcels: Embracing the $\boldsymbol{\pi}$

We assess the **feasibility of using modular containers** for enhanced parcel operations in the **East Coast Region** of the USA. We design and employ **simulation-based scenario designs and assessments** to analyze impact on transportation cost, efficiency, space utilization, and environmental footprint.

https://www.parcelandpostaltechnologyinternational.com/news/parcels/pandemic-sees-us-parcel-volumes-grow-by-nearly-40-in-2020.html

Unleashing Modular Potential

Simplified Management

Modular containers - easy to handle, store and transport, reducing handling efforts

Superior Reliability

Robust & reliable structure, enhancing truck fill rate by easing stacking constraints

Automation-Friendly

Optimized for automation - supporting efficient (un)loading and container crossdocking

Streamlined Operations

Facilitates dynamic consolidation & deconsolidation across the logistics network

Intelligent Tracking

Smart, efficient tracking through innovative technologies like RFID on containers

Plotting the Path: Containerization Journey

Traversing East Coast Demand

- Simulating demand for East Coast USA region
- Over 19 million parcels generated over 10 days
- Using statistical distributions or historical data

Parcel Type	Weight(lb)	Volume (cubic inches)
Small	< 10	< 450
Regular	≤ 75	< 10,000
Irregular	> 75	-

Parcel Types and their Weight-Volume Relationships

Geospatial heatmap representation of parcels generated over 10 days period (Left: Origins, Right: Destinations)

Network Design : Node Network

- Analyzed demographic data, major cities, highway intersections, and historical flow trends
- Six spatial cluster planes and corresponding hub resource tiers
- Local hubs (tier-2), Gateway hubs (tier-3), and Regional hubs (tier-4)
- Identified potential hub locations for efficient service and reliable parcel delivery

Showcasing the spatial distribution of local hubs (left), gateway hubs (center), and regional hubs (right)

Network Design : Establishing Connectivity

- Horizontal and vertical networks within a multi-tier structure
- Mesh networks within each tier and hyperlinks connecting horizontal networks
- Open or dedicated networks based on usage and accessibility

Showcasing the typical horizontal inter-hub flows of local hubs (left), gateway hubs (center), and regional hubs (right)

Operational Symphony : Key Protocols

1. Parcel Routing Strategies

- Efficient routing of parcels through network
- Base network vs. hyperconnected tiered mesh networks
- Adherence to service level requirements

Operational Symphony : Key Protocols

1. Parcel Routing Strategies

- Efficient routing of parcels through network
- Base network vs. hyperconnected tiered mesh networks
- Adherence to service level requirements

2. Parcel Consolidation

- Utilization of bags and containers
- Maximizing load efficiency
- Reducing overall transportation costs

Operational Symphony : Key Protocols

1. Parcel Routing Strategies

- Efficient routing of parcels through network
- Base network vs. hyperconnected tiered mesh networks
- Adherence to service level requirements

2. Parcel Consolidation

- Utilization of bags and containers
- Maximizing load efficiency
- Reducing overall transportation costs

3. On-Demand Trucking

- Flexible transportation solutions
- Addressing fluctuations in parcel volume
- Streamlining the supply chain and reducing idle time

Navigating Efficiently: Parcel Routing

Base Network Routing

- Algorithm: Shortest path algorithm for parcel routing
- Direct shipments for service level requirements not met through planned routes

Algorithm 1 1: **procedure** PARCELROUTE(O, D, S) ▷ Origin, Destination, Service Level $H_O \leftarrow$ nearest hub to $O, H_D \leftarrow$ nearest hub to $D, S' \leftarrow (S - \text{time to hubs})$ 2: for each O'D'S' combination do 3: Generate k feasible paths considering S' constraints 4: Select a path that maximizes consolidation 5: end for 6: if package cannot be delivered within S following the selected path then send parcel directly to D8: else 9: send parcel via determined route, traversing hubs until it reaches H_D and finally D 10: end if 11: 12: end procedure

Navigating Efficiently: Parcel Routing

Mesh Network Routing

- Algorithm: Efficient routing through suitable combination of hubs ۲
- Ensuring efficient delivery and meeting service requirements ٠

A	Algorithm 2		
	1: procedure OptimalParcelRoute(O, D)	> Origin, Destination	
	2: if direct path between <i>O</i> and <i>D</i> then	⊳ Direct path	
	3: send parcel directly to D		
	4: end if		
	5: $LH_O, LH_D \leftarrow$ nearest local hub to O and D	⊳ Local Hubs	
	6: if direct path between LH_O and D then		
	7: send parcel via LH_O to D		Tiered hub avatam:
	8: else if direct path between LH_O and LH_D then		Thereu hub system.
	9: send parcel via LH_O , LH_D , and then to D		Local hubs (Tier 2)
1	0: end if		
1	1: $GH_O, GH_D \leftarrow$ nearest gateway hub to LH_O and LH_D	▷ Gateway Hubs	Gateway hubs (Tier 3)
1	2: if direct path between GH_O and LH_D then		Deviewelle (Time 1)
1	3: send parcel via LH_O , GH_O , LH_D , and then to D		Regional nubs (Tier 4)
1	4: else if direct path between GH_O and GH_D then		Contraction and the second second
1	5: send parcel via LH_O , GH_O , GH_D , LH_D , and then to D		
1	6: end if		
1	7: $RH_O, RH_D \leftarrow$ nearest regional hub to GH_O and GH_D	Regional Hubs	
1	8: if direct path between RH_O and GH_D then		
1	9: send parcel via LH_O , GH_O , RH_O , GH_D , LH_D , and then to L)	
2	0: end if		
2	1: find shortest path from RH_O to RH_D using feasible regional hub	connections	
2	2: send parcel via determined route, passing through regional hubs u	intil it reaches RH_D ,	
	then send it to GH_D , LH_D , and finally to D		
2	3: end procedure		

Optimizing Efficiency: Parcel Consolidation

Current Operation

2*2*4

4*4*8

Containerized Operation

2*2*2

4*4*4

1*1*2

Crossdocking Containers

Crossdocking

Bag Consolidation

- Two-stage process
- Stage 1: Combine small packages with the same origin, destination, and service level
- Stage 2: Further consolidation at initial hub if fill rate < 50%

Mesh Network Consolidation

- Utilize π -containers in various sizes
- Elevate packages through tiered hubs based on service level and destination
- Container consolidation occurs at Tier-2 and Tier-3 hubs

Simulation Platform - Specifications

- Software: AnyLogic®
- Scale
 - ~139M parcels over 10+ days
 - ~10,000 SLICs
- Dynamically manages and tracks all trucks, trailers, parcels, and containers
- Allows monitoring global stats as simulation runs
- Enables testing various scenarios by modifying parameters or input data

Discrete-Event Agent-Based Simulation

Simulation Model of Containerized Parcel Logistic Network

Experimentation

- Generated over 19 million parcels spanning ten days
- East Coast USA region
- Base network with 713 hubs
- Transition to mesh network with hub structure:
 - 457 local hubs
 - 217 gateway hubs
 - 39 regional hubs

	Containerization				
Network/	No containers	Single Large Container	Various Size Containers		
Transportation	(NC)	(SLC)	(VC)		
Base Network	Scenario 1	Scenario 2	Scenario 3		
	(BN-NC)	(BN-SLC)	(BN-VC)		
Tiered Mesh Network			Scenario 4 (MN-VC)		

Driving Efficiency

Reducing Operational Costs

- Operational costs reduced by 61% with mesh network (MN) and various sizes of containers (VC)
- Handling cost reduced by using containers; saving is larger under base network (BN) as parcel and vehicle routes focused on
 efficiency whereas those in (MN) focused on service utilizing crossdocking and ondemand transportation
- Mesh network can reduce transportation
 cost significantly

Handling Cost

Efficient Handling Strategies

Minimizing Handling Costs

- Total handling cost savings are maximized (up to 65%) with container operation in base network (Scenario 3)
- Mesh network operation reduces the handling cost by ~60%, accounting for the new transportation and routing scheme (Scenario 4), which induces more modular container operations that can be standardized and automated

Component-wise handling cost for each scenario

Cost Structure

\$ per unit handling	Unloading	Emptying	Sorting	Filling	Crossdocking	Loading
Parcel - Irregular	0.55		0.55			0.55
Parcel - Regular, Small	0.15		0.15			0.15
Bag	0.16	0.16	0.16	0.16		0.16
Large Container	1.61	0.24		0.24	0.15	1.61
Small Container	0.27	0.04		0.04	0.10	0.27

The cost structure used in the study was based on previous research conducted for an international parcel delivery company.

Cost-Effective Transport

Reducing Transportation Cost

- Significant reduction in transportation costs
- BN-NC: Transportation costs \rightarrow \$155 m
- MN-VC: Transportation costs decreased to \$60 m
 - Reduction in number of trips required to transport parcels
 - Total trips(MN-VC)
 - 174,618 (19% lower than scenarios 1-3)
 - Higher fill rates and 3-trailer trucks
 - Mesh network's efficient use of container space

Efficient Load Utilization

Boosting Truck Fill Rates

- Effective fill rate = Parcel volume / Trailer volume
- Indicates utilization of trailer space
- Significant increase in three-trailer truck
 utilization in MN
- 3-trailer trucks depict higher consolidation legs and have a higher fill rate as compared to 1trailer trucks which may be running on low volume legs

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
	BN-NC	BN-SLC	BN-VC	MN-VC
Number of trips	213,100	215,457	214,940	174,618

Sustainable Operations

Reducing Environmental Footprint

Reduction of CO₂ emissions from transportation activity **by over 60%** This significant decrease contributes to a *greener and more sustainable future*

Empowering Drivers

Enhancing Operational Performance

- In Mesh network, truck leg length average is shorter
- Base network → 48% of truck legs are short enough (<4 hours)
- Mesh network → 84% of truck legs are short enough (<4 hours) for drivers can sleep at home
- Almost all legs can be covered by feeder truck whereas currently 10% of legs require sleeper teams in base network

Concluding Remarks & Future Work

Examine containerization and mesh networks' impact on costs, space utilization, and environmental factors Emphasize benefits of strategies, highlight driver well-being and reduced driving distances' significance

- Key areas to explore include:
 - Influence of other factors on transportation costs and efficiency, such as the nature of the cargo,

the size and capacity of trucks, and the geographical location of transportation hubs

• Application of advanced technologies, including automation and artificial intelligence, in

transportation operations to optimize efficiency further

Questions?

IPIC 20

9th Internation Physical Internet Co June 13-15, 20 Athens, Greece

