Automated high-speed Hyperloop cargo transportation for a sustainable logistics network

Walter Neu ^{1,2}, Lukas Eschment ¹, Heiko Duin ³, Thomas Nobel ⁴, Jurijs Tolujevs ⁵, Stephan Wurst ⁶, Irina Yatskiv ⁵, Thomas Schüning ^{1,2}

¹ University of Applied Sciences Emden/Leer, IHT, ² University Oldenburg, School of Mathematics and Science,
 ³ Bremer Institut für Produktion und Logistik GmbH (BIBA), ⁴ to-be-now-logistics-research-gmbh, Bremen,
 ⁵ TSI, Transport and Telecommunication Institute, Riga, ⁶ BALance Technology Consulting GmbH, Bremen

Automated high-speed Hyperloop cargo transportation for a sustainable logistics network

¹ University of Applied Sciences Emden/Leer, IHT
² University Oldenburg, School of Mathematics and Science
³ Bremer Institut für Produktion und Logistik GmbH (BIBA)
⁴ to-be-now-logistics-research-gmbh, Bremen
⁵ TSI, Transport and Telecommunication Institute, Riga
⁶ BALance Technology Consulting GmbH, Bremen

- Hyperloop & CargoTube Technology
- Production Logistics
- Modelling and Simulation
- Interconnected CargoTube @ EU PI

Horizion 2020, Fördernr. 861584

EMDEN·LEER

Carl von Ossietzky | Universität Oldenburg

Institute of Hyperloop Technology

Biomedical Physics & Acoustics

The nub of the matter

Second law of Thermodynamics:

THE ENTROPY OF A CLOSED SYSTEM ALWAYS INCREASES!

Hyperloop – the bottom line

$$F_{D} = \frac{1}{2} \rho C_{D} A \cdot v^{2}$$

$$F_{D} = F_{D} \cdot v$$

$$= \frac{1}{2} \rho C_{D} A \cdot v^{3}$$

$$v_{Maglev} \sim 400 \ \frac{km}{h} \Rightarrow E_{loss} > 83\% \ due \ to \ air \ friction$$

CargoTube transport – Hyperloop

70 TWh

- 10% air friction

17 million x annual consumption

of a family of four

or

ca. 15% annual consumption EU population

http://de.statista.com/statistik/daten/studie/282301/umfrage /transportleistung-des-strassengueterverkehrs-in-der-eu

CargoTube in production logistics

Logistics hub relocated out

- Standardized containers
- Automated operation 24
- Reduction of
 - Public road traffic load &
 - Green House Gases, CO₂
 - Pollutants
 - Noise & light
 - Energy consumption

Demand Planning

- 9-12 km distance
- 11.000 m³ per day

⁽Source: GVZe Wolfsburg & tbnlr-gmbh)

Modelling and simulation approaches

- Discrete event simulation
- System dynamics
- Cross-Impact analysis
- Life cycle performance assessment
- Synchromodal optimisation
- Electrification analysis

2022 IEEE 28th ICE/ITMC & 31st IAMOT Joint Conference, BIBA, H. Duin

Production plant scenario

• ~ 10,000 m^3 / day

Distribution on Pods (1 Pods/minute w. 10 containers each)

- Speed ~ (100 150) km/h
 - 16 Pods in tube both ways
- 36 pods in the system
 - ➢ 10 min. handling time => 20 Pods
 - Loading & unloading optimisation

Multi container Pod

5-12 m

Hyperloop Competition, LA

NPV and OPEX for CargoTube, diesel & electric truck connections between a LSP and the VW production plant

Prof. Dr. Walter Neu - IHT

Life cycle performance assessment (LCPA)

Prof. Dr. Walter Neu - IHT

9th International Physical Internet Conference

Cross Docking – CargoTube integration

Automated pallet transport

ATVs and Pick and Place Robots

Prof. Dr. Walter Neu - IHT

9th International Physical Internet Conference

Hyperloop test facility @ IHT Emden

Prof. Dr. Walter Neu - IHT

9th International Physical Internet Conference

Interconnected CargoTube in the EU Physical Internet —

- Hub:
 - LSRI at Lathen, Germany
- Satellites
 - EHC Groningen, Netherlands
 - EuroTube Valais, Switzerland
 - Hardt Delft, Netherlands
 - HTT Toulouse, France
 - Nevomo Warsaw, Poland
 - TransPod Droux, France
 - TUM München, Germany
 - Virgin Hyperloop Spain
 - Zeleros Valencia, Spain

Interconnected CargoTube in the WWW Sibasicate Internet

• LSRI - Open

- Hubs and Satel
- cross domain
- Design of a not care sharing infrastructure
- Users / Stakeholder
 - Academia / Universit
 - Industry, SMEs
 - Public stakeholders
 - EU platforms and project
 - Standardization + Certification

June 13-15, 2023 Athens, Greece

Sustainability: low GHG Emissions

Reliability: Automation, no traffic jam, no delays

Realistic top speeds 2x NTG

Confined system => high value goods

- Goods that need fast transport (medicine, food)

Interconnected CargoTube in the EU Physical Internet

Contributing authors:

Lukas Eschment, Heiko Duin, Thomas Nobel, Jurijs Tolujevs, Stephan Wurst, Irina Yatskiv, Thomas Schüning

Board of IHT: Prof. Dr. Walter Neu Prof. Dr.-Ing. Thomas Schüning Members of IHT: M.Sc. Lukas Eschment M. Sc. James Napier B. Eng. Christian Ahlswede M. Eng. Marcel Stamm Kristina Bachmann BA/MA Thesis Students: Renske Gärner Geert Petrin Project Students: Angela Gupta Ned Whitesell