

Hyperconnected Urban Logistic Service Networks: Bidding-Based Design Framework

Simon Soonhong Kwon

Joint work with

Benoit Montreuil, Mathieu Dahan, Walid Klibi

School of Industrial and Systems Engineering, Georgia Institute of Technology

Expanding the logistics Scope

Motivation: Challenges in urban cities

Source: United Nations (UN), 2018 Revision of World Urbanization Prospects of 10+ millions inhabitants

Source: Statista (Sep 2022)

Urban logistics faced with economics & environmental challenges

IPIC 2023

2

Hyperconnected City Logistics

Interconnect:

- Cities as nodes of the worldwide logistic web
- City logistic stakeholders into an open system via systems standardization
 - Coordination, Collaboration, Cooperation
- Multi-faceted activities of city logistics and urban planning
- Multiplicity of urban logistic centers
- City logistic networks into an urban web architecture

Source: Physical Internet Enabled Hyperconnected City Logistics (Crainic and Montreuil '16)

Hyperconnected Urban Logistic Network Topology

Utbrancityt streptesedtæslagsæsæt rofætendandu zortæs (mæishzonæss)orks Origin-Destination (O-D) commodities with time requirements Hyperconnected Urban Logistic Service Networks

Representative literature on Hyperconnected Multi-tier mesh networks

[Montreuil et al. '18] [Hettle et al. '21] [Grover et al. '23]

Problem Definition

Logistic Orchestrator

- Hyperconnected multi-tier network topology
- O-D service guarantees (e.g., x-hour delivery)
- Multi-party coordination/orchestration via a combinatorial auction
- Allocation of logistic activities to LSPs
- Imposing service level agreement (SLA) for each logistic activity
- Robust O-D service guarantees in min. cost

Combinatorial Auction

Requirements

+ – × ÷

Optimized Service Networ

Hyperconnected Urban Logistic Service Networks

- Providing logistic services (transport/hub operation)
- Participating in the auction by submitting
 bids for logistic activities with bid prices
 - Respecting the network topology and SLA
 - Profit maximization

Bids

Logistic Activities in Hyperconnected Urban Logistic Network

IPIC 2023

6

Flow Movement Across the Proposed Networks

Origin-Destination flow movement across the networks through multiple planes via a set of logistic activities (cluster transport and hub operation activities)

Hyperconnected Urban Logistic Service Networks

Destination P/D unit zone

Vertical/Horizontal movements \Rightarrow Logistic activities

Service Level Agreement (SLA)

Set of logistic activities in each tier of hyperconnected multi-tier networks

- Movement of O-D commodities through • multiple planes via a set of logistic activities
 - One path for each O-D commodity
- **Robust O-D service guarantees** •
 - e.g., x-hour delivery from origin O to destination D at 99.9%

Multiple SLA options for each logistic activity More freedom for logistic service providers

Robust time requirements (Service level agreement (SLA)) imposed on logistic activities e.g., within 40 minutes for Area 1 transport activity at 99.9%

SLA Options for Logistic Activities by Logistic Orchestrator

Example of the movement of O-D commodity

Hyperconnected Urban Logistic Service Networks

Going through 11 logistic activities

 6 cluster transport and 5 hub operation activities

Many combinatorial choices

- Equally allocated
- Proportional to volume/distance
- \Rightarrow Possibly too aggressive
- \Rightarrow High bid prices

•

Impact of SLA for activities on the overall cost

• Requiring approximation of the reaction of bidders (LSPs)

IPIC 2023

9

Bid Construction by Bidders (LSPs)

Hyperconnected Urban Logistic Service Networks

Bid Construction by Bidders (LSPs)

Submitted bids for Area transport activities by Bidders 1 and 2

Hyperconnected Urban Logistic Service Networks

06/12/23

Bid-to-Activity Allocation

Hyperconnected Urban Logistic Service Networks

Bid-to-Activity Allocation ⇒ Optimized Service Network

06/12/23

Hyperconnected Urban Logistic Service Networks

Area-Plane

Case where all local hubs are allocated to one LSP (one bundle bid)

Unit zone-Plane

Case where all unit zone transport activities and access hub activities are allocated to one LSP (one bundle bid), respectively

Different colors ⇒ Different bids allocated

Research Questions/Avenues

We consider a first-price sealed-bid reverse combinatorial auction in which the logistic orchestrator allocates each logistic activity to some specific bidder such that the O-D service guarantees are robustly guaranteed while minimizing cost

1st Phase by Logistic Orchestrator

- **Pre-auction stage**
 - Bid definition/requirements
 - Network/Logistic activity Information
- Service Level Agreement Offer **Problem (SLAOP)**
- How to determine a set of **Service Level Agreement** (SLA) options for each logistic activity 06/12/23

2nd Phase by Bidders

- **Bid Construction Problem (BCP)**
- Which bids to submit when under the uncertainty of other bidders' decisions and orchestrator's final decisions?
 - **Profit Maximization** •

Hyperconnected Urban Logistic Service Networks

3rd Phase by Logistic Orchestrator

- Winner Determination Problem (WDP) •
 - How to determine winning bids for each logistic activity and which SLA to assign each logistic activity
 - **Robust O-D service guarantees** •
 - **Cost Minimization** •

Summary

Contributions:

- New notion of the service network design problem in line with Physical Internet initiatives
- Three-phased bidding-based design framework ۲

Next steps:

- Optimization, Simulation, and Game theoretic techniques for each Phase •
 - Approximation of reaction of other players •
 - Capturing competition and uncertainty •
 - **Robust O-D service guarantees**

Thank you!

Questions: skwon82@gatech.edu

Expanding the logistics Scope