Resilience Assessment of Hyperconnected Parcel Logistic Networks Under Worst-Case Disruptions

Onkar Kulkarni

Joint work with

Mathieu Dahan

Benoit Montreuil

School of Industrial and Systems Engineering, Georgia Institute of Technology

International Physical Internet Conference, Athens, Greece, June 14, 2023

Georgia Tech College of Engineering H. Milton Stewart School of Industrial and Systems Engineering

- Parcel delivery industry is one of the fastest growing industries in the world.
 - Last year, 87 billion parcels were shipped and delivered.
 - Parcel volume is expected to reach 200 billion in next 5 years.

- Parcel delivery industry is one of the fastest growing industries in the world.
 - Last year, 87 billion parcels were shipped and delivered.
 - Parcel volume is expected to reach 200 billion in next 5 years.
- Facets of parcel delivery industry:
 - Asset intensive industry
 - Speed and accuracy of parcel delivery
 - Customers spread out across wide geographical area

- Parcel delivery industry is one of the fastest growing industries in the world.
 - Last year, 87 billion parcels were shipped and delivered.
 - Parcel volume is expected to reach 200 billion in next 5 years.
- Facets of parcel delivery industry:
 - Asset intensive industry
 - Speed and accuracy of parcel delivery
 - Customers spread out across wide geographical area

- Requires intricate planning
 - Network Design

- Parcel delivery industry is one of the fastest growing industries in the world.
 - Last year, 87 billion parcels were shipped and delivered.
 - Parcel volume is expected to reach 200 billion in next 5 years.
- Facets of parcel delivery industry:
 - Asset intensive industry
 - Speed and accuracy of parcel delivery
 - Customers spread out across wide geographical area
 - Moreover, logistics networks designed with only efficiency considerations
 - Not ideal as disruptions occur

- Requires intricate planning
 - Network Design

Disruptions

ngish Edition • Print Edition | Video | Podcasts | Latest Headlines

Home World U.S. Politics Economy Business Tech Markets Opinion Books & Arts Real Estate Life & Work Style

BUSINESS

FedEx to Ramp Up Spending to Ease Delivery Delays

WORLD ECONOMY

Another shipping crisis looms on Covid fears in southern China

PUBLISHED MON, JUN 14 2021-9:01 PM EDT I UPDATED MON, JUN 14 2021-9:21 PM EDT

- Parcel delivery networks face disruptions:
 - Major traffic jams
 - Power outages
 - Pandemics

WATERLOO REGION

Cold weather and staffing issues from Omicron impact mail and parcel deliveries

MALAYSIA

Parcel Delays Incoming: Floods Causing Deliveries To Slow Down

House not flooded? You might still be affected by the flood.

Disruptions

ngish Edition • Print Edition | Video | Podcasts | Latest Headlines

Home World U.S. Politics Economy Business Tech Markets Opinion Books & Arts Real Estate Life & Work Style

BUSINESS

FedEx to Ramp Up Spending to Ease Delivery Delays

WORLD ECONOMY

Another shipping crisis looms on Covid fears in southern China

PUBLISHED MON, JUN 14 2021-9:01 PM EDT I UPDATED MON, JUN 14 2021-9:21 PM ED1

- Parcel delivery networks face disruptions:
 - Major traffic jams
 - Power outages
 - Pandemics

WATERLOO REGION

Cold weather and staffing issues from Omicron impact mail and parcel deliveries

MALAYSIA

Parcel Delays Incoming: Floods Causing Deliveries To Slow Down

House not flooded? You might still be affected by the flood.

- Disruptions lead to:
 - Excess pressure on functional resources
 - Late parcel deliveries
 - Increased costs

Resilience Evaluation

• Simulation Models: Simulation of disruptive events in which the network components fail

- Random or localized failures
- Total or partial failures

Resilience Evaluation

- Simulation Models: Simulation of disruptive events in which the network components fail
 - Random or localized failures
 - Total or partial failures
- Analytical models: Estimate the vulnerability of the network through its structural properties
 - Centrality measures
 - Path lengths, edge-disjoint paths

Resilience Evaluation

Stochastic disruptive events only - requires disruption data

- Simulation Models: Simulation of disruptive events in which the network components fail
 - Random or localized failures
 - Total or partial failures
- Analytical models: Estimate the vulnerability of the network through its structural properties
 - Centrality measures
 - Path lengths, edge-disjoint paths

Stochastic disruptive events only - requires disruption data

- Simulation Models: Simulation of disruptive events in which the network components fail
 - Random or localized failures
 - Total or partial failures
- Analytical models: Estimate the vulnerability of the network through its structural properties
 - Centrality measures
 - Path lengths, edge-disjoint paths

- Need to also develop a tool to assess resilience of the large-scale networks under such worst-case disruptive events
 - Intelligent fictitious adversary (Game-theory based)

Resilient Assessment of Parcel delivery Networks

- Aim: To devise a tool that assess the resilience of large-scale logistics networks under worst-case disruptions
 - Through operational costs faced by networks

Resilient Assessment of Parcel delivery Networks

- Aim: To devise a tool that assess the resilience of large-scale logistics networks under worst-case disruptions
 - Through operational costs faced by networks
- We study a two-person Stackelberg game:
 - Network components are disrupted to cause most harm (fictitious adversary)
 - Best response to minimize the effects of disruptions (logistics company)

• Contributions:

- Bi-level mixed integer linear program (Network Interdiction Problem)
- Exact solution technique to assess the resilience
- Resilience analysis of networks

Resilient Assessment of Parcel delivery Networks

- Aim: To devise a tool that assess the resilience of large-scale logistics networks under worst-case disruptions
 - Through operational costs faced by networks
- We study a two-person Stackelberg game:
 - Network components are disrupted to cause most harm (fictitious adversary)
 - Best response to minimize the effects of disruptions (logistics company)

• Contributions:

- Bi-level mixed integer linear program (Network Interdiction Problem)
- Exact solution technique to assess the resilience
- Resilience analysis of networks

• Agenda:

To leverage tools from optimization, network science, and game theory to assess the resilience of logistics networks under worst-case disruptions.

Related Work

Logistics & Transportation

[Ford & Fulkerson '58] [Anderson & Nash '87] [Hall et al. '07]

Game Theory

[Washburn & Wood '95] [Lim & Smith '07] [Israeli & Wood '02]

Linear & Discrete Optimization

[Nemhauser & Wolsey '99] [Bertsimas & Tsitsiklis. '97] [Farkas. '02]

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- Follower: Minimize the commodity delivery costs after edge-interdiction

• Given:

• Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- Follower: Minimize the commodity delivery costs after edge-interdiction

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- Follower: Minimize the commodity delivery costs after edge-interdiction

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$
- $\bullet \ \mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs}$

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- Follower: Minimize the commodity delivery costs after edge-interdiction

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$
- $\bullet \ \mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs}$
- $\bullet~\mathcal{A}:$ Set of directed transportation edges

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- **Follower:** Minimize the commodity delivery costs after edge-interdiction

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$
- $\bullet \ \mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs}$
- $\bullet~\mathcal{A}:$ Set of directed transportation edges

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- **Follower:** Minimize the commodity delivery costs after edge-interdiction

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$
- $\bullet \ \mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs}$
- $\bullet~\mathcal{A}:$ Set of directed transportation edges

• Goal:

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- **Follower:** Minimize the commodity delivery costs after edge-interdiction

• Decision Variables:

• $x_{i,j} \in \{0,1\}$: Arc (i,j) is interdicted .

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$
- $\bullet \ \mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs}$
- $\bullet~\mathcal{A}:$ Set of directed transportation edges

• Goal:

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- **Follower:** Minimize the commodity delivery costs after edge-interdiction

• Decision Variables:

• $x_{i,j} \in \{0,1\}$: Arc (i,j) is interdicted .

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$
- $\bullet \ \mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs}$
- $\bullet~\mathcal{A}:$ Set of directed transportation edges

• Goal:

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- **Follower:** Minimize the commodity delivery costs after edge-interdiction

• Decision Variables:

• $x_{i,j} \in \{0,1\}$: Arc (i,j) is interdicted .

• Given:

- Directed Graph $\mathcal{G} = (\mathcal{H} \cup \mathcal{S} \cup \mathcal{T}, \mathcal{A})$
- $\bullet \ \mathcal{P} \subseteq \mathcal{S} \times \mathcal{T}: \mathsf{Set} \ \mathsf{of} \ \mathsf{Origin-Destination} \ \mathsf{pairs}$
- $\bullet \ \mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs}$
- $\bullet~\mathcal{A}:$ Set of directed transportation edges

• Goal:

- Leader: Interdict edges to maximize the commodity delivery costs between all OD pairs
- **Follower:** Minimize the commodity delivery costs after edge-interdiction

• Decision Variables:

- $x_{i,j} \in \{0,1\}$: Arc (i,j) is interdicted .
- $f_{i,j}^p \in \mathbb{R}_{\geq 0}$: Commodity flow on arc (i,j) for O-D pair p.

 $\mathcal{P}:\mathsf{Set}\xspace$ of O-D pairs

 \mathcal{H} : Set of hubs

 $\mathcal{A}:\mathsf{Set}$ of transportation arcs

 d_p : Commodity demand for O-D pair p

Onkar Kulkarni (Georgia Tech)

Resilience Assessment of Networks Under Worst-Case Disruptions

June 14, 2023 8 / 15

subject to:

$$x_{i,j} \in \{0,1\},$$
 $\forall (i,j) \in \mathcal{A}$ Arc interdiction variables \mathcal{H} : Set of hubs \mathcal{A} : Set of transportation arcs d_p : Commodity demand
for O-D pair p

Onkar Kulkarni (Georgia Tech)

 \mathcal{P} : Set of O-D pairs

Resilience Assessment of Networks Under Worst-Case Disruptions

June 14, 2023 8 / 15

subject to:

$$\sum_{(i,j)\in\mathcal{A}} x_{i,j} \le \beta$$

Interdiction budget

 $x_{i,j} \in \{0,1\},$ $\forall (i,j) \in \mathcal{A}$ Arc interdiction variables

 $\mathcal P:\mathsf{Set}$ of O-D pairs

 $\mathcal{H}:$ Set of hubs $\mathcal{A}:$ Set of transportation arcs

 d_p : Commodity demand for O-D pair p

Onkar Kulkarni (Georgia Tech)

Resilience Assessment of Networks Under Worst-Case Disruptions

une 14, 2023 8 / 15

$$\sum_{(i,j)\in\mathcal{A}} x_{i,j} \leq \beta$$

Interdiction budget

 $x_{i,j} \in \{0,1\},$ $\forall (i,j) \in \mathcal{A}$ Arc interdiction variables

 $\mathcal{P}:\mathsf{Set}\xspace$ of O-D pairs

 $\mathcal{H}: \mathsf{Set} \ \mathsf{of} \ \mathsf{hubs} \qquad \qquad \mathcal{A}: \mathsf{Set} \ \mathsf{of} \ \mathsf{transportation} \ \mathsf{arcs}$

 d_p : Commodity demand for O-D pair p

Onkar Kulkarni (Georgia Tech)

Resilience Assessment of Networks Under Worst-Case Disruptions

une 14, 2023 8 / 15

Total commodity delivery costs

subject to:

 $\max_{x} \left\{ \right.$

	$\sum_{(i,j)\in\mathcal{A}} x_{i,j} \leq eta$					
	$f_{i,j}^p \ge 0,$	$orall (i,j) \in \mathcal{A}, orall p \in \mathcal{P}$	Commodity flow variables			
	$x_{i,j} \in \{0,1\},$	$orall (i,j) \in \mathcal{A}$	Arc interdiction variables			
$\mathcal P$: Set of O-D pairs	\mathcal{H} : Set of hubs	$\mathcal{A}:$ Set of transportation arcs	d_p : Commodity demand for O-D pair p			
Onkar Kulkarni (Georgia Tech)	Resilience Assessme	nt of Networks Under Worst-Case Disruptions	June 14, 2023 8 ,			

$$\begin{split} & \max_{x} \left\{ \min_{f} \left(c_{i,j} + M \cdot x_{i,j} \right) f_{i,j}^{p} \right\} & \text{Total commodity delivery costs} \\ & \text{subject to:} \qquad \sum_{j \in \mathcal{T} \cup \mathcal{H} \mid (s,j) \in \mathcal{A}} f_{s,j}^{p} = d_{p}, & \forall p = (s,t) \in \mathcal{P} \\ & \sum_{i \in S \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^{p} = d_{p}, & \forall p = (s,t) \in \mathcal{P} & \text{Commodity flow balance} \\ & \sum_{j \in \mathcal{T} \cup \mathcal{H} \mid (i,j) \in \mathcal{A}} f_{i,j}^{p} = \sum_{j \in S \cup \mathcal{H} \mid (j,i) \in \mathcal{A}} f_{j,i}^{p}, & \forall p \in \mathcal{P}, \forall i \in \mathcal{H} \\ & \sum_{(i,j) \in \mathcal{A}} x_{i,j} \leq \beta & \text{Interdiction budget} \\ & f_{i,j}^{p} \geq 0, & \forall (i,j) \in \mathcal{A}, \forall p \in \mathcal{P} & \text{Commodity flow variables} \\ & x_{i,j} \in \{0,1\}, & \forall (i,j) \in \mathcal{A} & \text{Arc interdiction variables} \\ & \mathcal{P} : \text{Set of O-D pairs} & \mathcal{H} : \text{Set of hubs} & \mathcal{A} : \text{Set of transportation arcs} & d_{p} : \text{Commodity demand} \\ & \text{for O-D pair p} & \text{Commodity demand} \\ & \text{for O-D pair p} & \text{Commodity demand} \\ & \text{For the function for O-D pair p} & \text{Commodity demand} \\ & \text{For the function for O-D pair p} & \text{Commodity demand} \\ & \text{For the function for O-D pair p} & \text{Commodity demand} \\ & \text{Constant for O-D pair p} & \text{Commodity demand} \\ & \text{For the function for O-D pair p} & \text{Commodity demand} \\ & \text{For the function for O-D pair p} & \text{Commodity demand} \\ & \text{For the function for O-D pair p} & \text{Commodity demand} \\ & \text{Commodity for the function for O-D pair p} & \text{Commodity demand} \\ & \text{Commodity for O-D pair p} & \text{Commodity demand} \\ & \text{Commodity for the function for O-D pair p} & \text{Commodity demand} \\ & \text{Commodity for the function for O-D pair p} & \text{Commodity for the function for O-D pair p} \\ & \text{Commodity for the function for O-D pair p} & \text{Commodity for the function for O-D pair p} \\ & \text{Commodity for the function for O-D pair p} & \text{Commodity for the function for O-D pair p} \\ & \text{Commodity for O-D pair p} & \text{Commodity for O-D pair p} & \text{Commodity for O-D pair p} \\ & \text{Commodity for O-D pair p} & \text{Commodity for O-D pair p} & \text{Commodity for O-D pair p} \\ & \text{Commodity for O-D pair p} & \text{Commodity for O-D pair p} & \text{Commodity for O-D pair p} \\ & \text{Commodity for$$

$$\begin{split} \max_{x} \left\{ \min_{f} \left(c_{i,j} + M \cdot x_{i,j} \right) f_{i,j}^{p} \right\} & \text{Total commodity delivery costs} \\ \text{subject to:} & \sum_{j \in \mathcal{T} \cup \mathcal{H} \mid (s,j) \in \mathcal{A}} f_{s,j}^{p} = d_{p}, & \forall p = (s,t) \in \mathcal{P} \\ & \sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^{p} = d_{p}, & \forall p = (s,t) \in \mathcal{P} \\ & \sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,j) \in \mathcal{A}} f_{i,j}^{p} = \sum_{j \in \mathcal{S} \cup \mathcal{H} \mid (j,i) \in \mathcal{A}} f_{j,i}^{p}, & \forall p \in \mathcal{P}, \forall i \in \mathcal{H} \\ & \sum_{i \in \mathcal{I} \cup \mathcal{H} \mid (i,j) \in \mathcal{A}} f_{i,j}^{p} \leq \beta & \text{Interdiction budget} \\ & f_{i,j}^{p} \geq 0, & \forall (i,j) \in \mathcal{A}, \forall p \in \mathcal{P} \\ & x_{i,j} \in \{0,1\}, & \forall (i,j) \in \mathcal{A} & \text{Arc interdiction variables} \\ \mathcal{P} : \text{Set of O-D pairs} & \mathcal{H} : \text{Set of hubs} & \mathcal{A} : \text{Set of transportation arcs} & d_{p} : \text{Commodity demand} \\ & \text{for O-D pair } p \\ \text{Subtract General Text} & \text{Subsets Under Worts-Case Discustors} \\ \end{array}$$

Bi-level program

s.t:

$$\begin{split} & \underset{x}{\text{Bi-level program}} \\ & \underset{x}{\max} \left\{ \ \min_{f} \Big\{ \sum_{p \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}} (c_{i,j} + M \cdot x_{i,j}) f_{i,j}^{p} \Big\} \right\} \end{split}$$

s.t:

$$\sum_{j \in \mathcal{T} \cup \mathcal{H} \mid (s,j) \in \mathcal{A}} f_{s,j}^p = d_p \qquad \qquad \forall p \in \mathcal{P}$$

$$\sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^p = d_p \qquad \qquad \forall p \in \mathcal{P}$$

$$\sum_{\substack{j \in \mathcal{T} \cup \mathcal{H} \mid (s,j) \in \mathcal{A} \\ f_{i,j}^p \ge 0}} f_{s,j}^p = \sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^p \qquad \forall p \in \mathcal{P}, \forall i \in \mathcal{H}$$

$$f_{i,j}^p \ge 0 \qquad \forall p \in \mathcal{P}, \forall (i,j) \in \mathcal{A}$$

$$x_{i,j} \in \{0,1\} \qquad \forall (i,j) \in \mathcal{A}$$

Bi-level program		Single-level mixed inte	ger program
$\max_{x} \left\{ \min_{f} \left\{ \sum_{p \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}} (c_{i,j} + M \cdot x_{i,j}) f_{i,j}^{p} \right\} \right\}$	Dual of the inner problem $$	$\max_{x,\pi} \sum_{p \in \mathcal{P}} (\pi_s^p - \pi_t^p)$	
s.e. $\sum_{j \in \mathcal{T} \cup \mathcal{H} \mid (s,j) \in \mathcal{A}} f_{s,j}^p = d_p$	$\forall p \in \mathcal{P}$	s.t: $\pi_i^p - \pi_i^p < c_{i,i} + M \cdot x_{i,i}$	$\forall p \in \mathcal{P},$
$\sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^p = d_p$	$\forall p \in \mathcal{P}$	$\sum_{i,j=1}^{n} x_{i,j} \leq \beta$	$orall (i,j) \in \mathcal{A}$
$\sum_{j \in \mathcal{T} \cup \mathcal{H} \mid (s,j) \in \mathcal{A}} f_{s,j}^p = \sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^p$	$\forall p \in \mathcal{P}, \forall i \in \mathcal{H}$	$(i,j) \in \mathcal{A}$ $x_{i,j} \in \{0,1\}$	$\forall (i,j) \in \mathcal{A}$
$egin{array}{l} f_{i,j}^p \geq 0 \ \sum x_{i,j} \leq eta \end{array}$	$orall p \in \mathcal{P}, orall (i,j) \in \mathcal{A}$		
$ \substack{(i,j)\in\mathcal{A}\\ x_{i,j}\in\{0,1\}}$	$orall (i,j) \in \mathcal{A}$		

Bi-level program		Single-level mixed inte	ger program
$\max_{x} \left\{ \min_{f} \left\{ \sum_{p \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}} (c_{i,j} + M \cdot x_{i,j}) f_{i,j}^{p} \right\} \right\}$ s.t:	Dual of the inner problem	$\max_{x,\pi} \sum_{p \in \mathcal{P}} (\pi_s^p - \pi_t^p)$	
$\sum_{j \in \mathcal{T} \cup \mathcal{H} (s,j) \in \mathcal{A}} f_{s,j}^p = d_p$	$\forall p \in \mathcal{P}$	s.t: $\pi_i^p - \pi_i^p \le c_{i,j} + M \cdot x_{i,j}$	$\forall p \in \mathcal{P},$
$\sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^p = d_p$	$\forall p \in \mathcal{P}$	$\sum_{(i,j) \in A} x_{i,j} \leq \beta$	$orall (i,j) \in \mathcal{A}$
$\sum_{j \in \mathcal{T} \cup \mathcal{H} \mid (s,j) \in \mathcal{A}} f_{s,j}^p = \sum_{i \in \mathcal{S} \cup \mathcal{H} \mid (i,t) \in \mathcal{A}} f_{i,t}^p$	$\forall p \in \mathcal{P}, \forall i \in \mathcal{H}$	$(i,j)\in\mathcal{A}$ $x_{i,j}\in\{0,1\}$	$\forall (i,j) \in \mathcal{A}$
$\sum_{i,j}^{p} \geq 0$ $\sum_{i,j} x_{i,j} \leq eta$	$orall p \in \mathcal{P}, orall (i,j) \in \mathcal{A}$		
$(i,j)\in\mathcal{A}$ $x_{i,j}\in\{0,1\}$	$\forall (i,j) \in \mathcal{A}$	Large # variables: Problem requ	size reduction uired

Shortest Path Length: 3 # Edge interdictions: 0

• Examples:

• Examples:

• Examples:

- Which edge(s) to interdict depends upon the resource availability at adversary
- Problem size reduction: Not generating arc variables that won't be interdicted
 - Search tree to find out such arcs

Case Study

- Major Parcel Delivery Company in China
 - Several millions of parcels handled every week
 - Implementation Scale: Central China
- Potential locations for logistics hub construction
 - Logistics significance: Major cities, highway intersections, and existing city-based inbound/outbound hubs
- Regulations set by Chinese government
 - 11-hour driving limit per day
 - Allowable transportation edges: 5.5 hours of travel time
- Topology-optimized networks designed through minimizing
 - single shortest path Lean network
 - k-shortest paths
 - k-shortest edge-disjoint path

Method	
Pre-processing + Gurobi	
Gurobi	

Method	# Hubs	$ \mathcal{A} $
	60	1005
Pre-processing +	70	1074
Gurobi	80	1344
	90	1429
Gurobi	60	1005
	70	1074
	80	1344
	90	1429

Method	# Hubs	$ \mathcal{A} $	$ \mathcal{A}' $
	60	1005	586
Pre-processing +	70	1074	656
Gurobi	80	1344	767
	90	1429	817
	60	1005	-
Curchi	70	1074	-
Gurobi	80	1344	-
	90	1429	-

Method	# Hubs	$ \mathcal{A} $	$ \mathcal{A}' $	# Variables
	60	1005	586	3137
Pre-processing + Gurobi	70	1074	656	3227
	80	1344	767	3312
	90	1429	817	3403
Gurobi	60	1005	-	18207
	70	1074	-	18641
	80	1344	-	21290
	90	1429	-	23388

Method	# Hubs	$ \mathcal{A} $	$ \mathcal{A}' $	# Variables	# Constraints	
	60	1005	586	3137	4288	
Pre-processing +	70	1074	656	3227	4571	
Gurobi	80	1344	767	3312	4836	
	90	1429	817	3403	5912	
	60	1005	-	18207	150,976	
Gurobi	70	1074	-	18641	163,420	
	80	1344	-	21290	212,830	
	90	1429	-	23388	261,777	

Method	# Hubs	$ \mathcal{A} $	$ \mathcal{A}' $	# Variables	# Constraints	Total Time (sec)	Optimality Gap (%)
	60	1005	586	3137	4288	54	0
Pre-processing +	70	1074	656	3227	4571	59	0
Gurobi	80	1344	767	3312	4836	62	0
	90	1429	817	3403	5912	82	0
	60	1005	-	18207	150,976	time limit	504.5
Gurobi	70	1074	-	18641	163,420	time limit	831.4
	80	1344	-	21290	212,830	time limit	1392.5
	90	1429	-	23388	261,777	time limit	1965.2

Summary

Contributions:

- Resilience assessment of large-scale networks under worst-case disruptions
- Network interdiction problem with a bi-level mixed integer formulation
- Dualization procedure and search tree strategy to reduce the problem size drastically
- Computational performance comparison of the solution methodology against off-the-shelf solver
- Resilience analysis of the topology-optimized networks

Summary

Contributions:

- Resilience assessment of large-scale networks under worst-case disruptions
- Network interdiction problem with a bi-level mixed integer formulation
- Dualization procedure and search tree strategy to reduce the problem size drastically
- Computational performance comparison of the solution methodology against off-the-shelf solver
- Resilience analysis of the topology-optimized networks

Future work:

- Hub sizes consideration in modelling
- Worst-case disruption in Network Design

Summary

Contributions:

- Resilience assessment of large-scale networks under worst-case disruptions
- Network interdiction problem with a bi-level mixed integer formulation
- Dualization procedure and search tree strategy to reduce the problem size drastically
- Computational performance comparison of the solution methodology against off-the-shelf solver
- Resilience analysis of the topology-optimized networks

Future work:

- Hub sizes consideration in modelling
- Worst-case disruption in Network Design

Thank you!

Questions: onkar.kulkarni@gatech.edu