

IPIC 2023

9th International **Physical Internet Conference**

> June 13-15, 2023 Athens, Greece

Hyperconnected Urban Parcel Network Design with Tight Delivery Service Requirements

Johan Leveque, Simon Soonhong Kwon

Joint work with

Walid Klibi, Gautier Stauffer, Benoit Montreuil

Centre of Excellence for Supply Chain Innovation & Transportation (CESIT), Kedge Business School La Poste Group

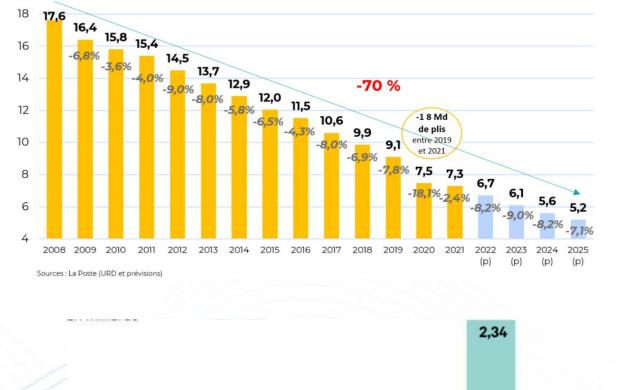
ni.events/IPIC2023

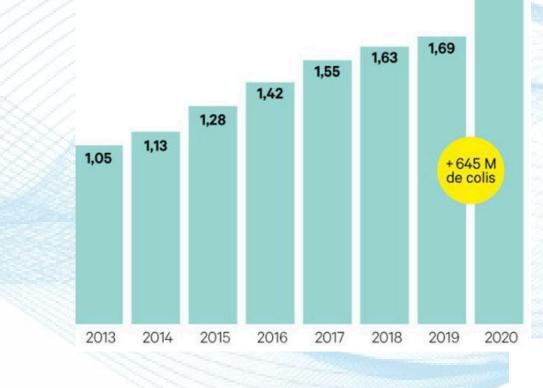
Expanding the logistics Scope

Context

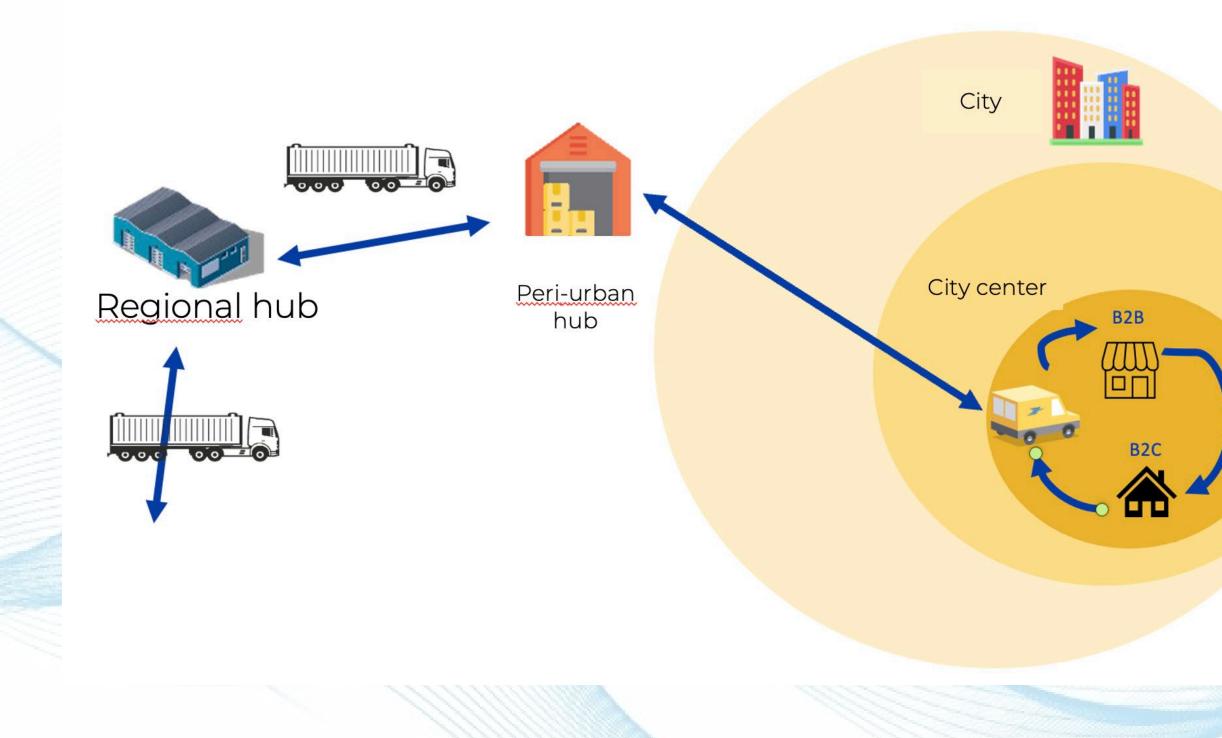
-60 % de volumes courrier adressé de 2008 à 2021

La Poste's network is in deep transformation.

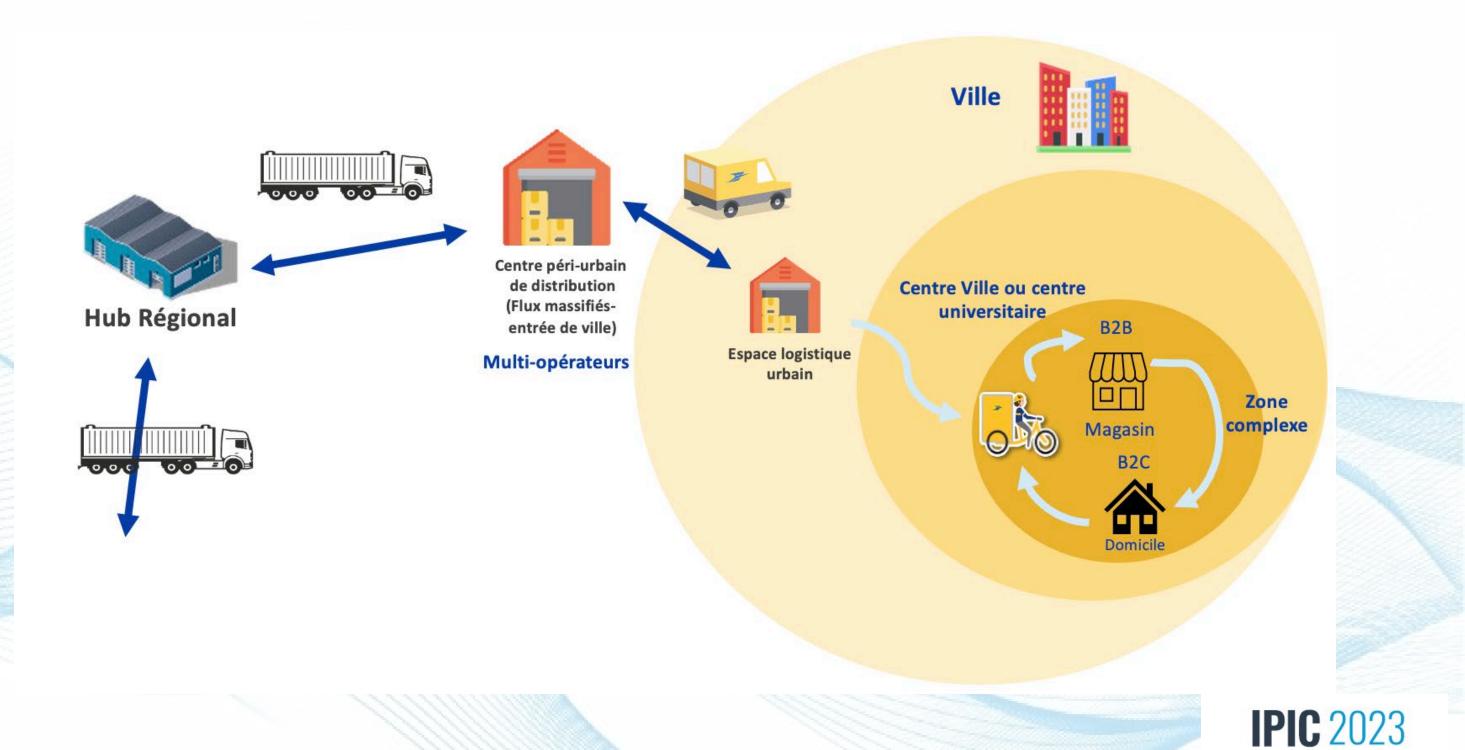




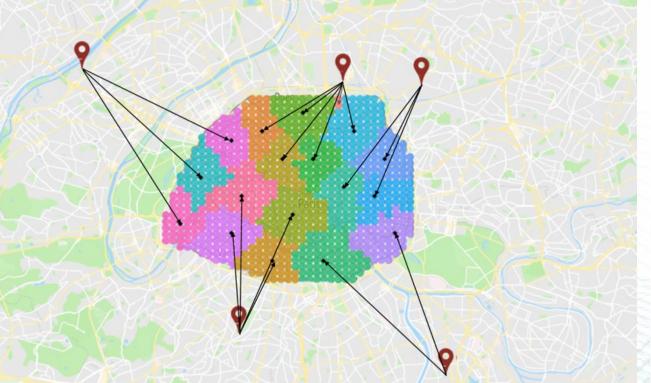
Historical delivery network



Current delivery network



Emerging quick markets



BFMTV

L'hypercroissance du E-commerce : un challenge pour les ... Le développement du « Ship from store » complexifie les plans de transport avec l'utilisation de plusieurs prestataires du dernier kilomètre. La ... ll y a 1 jour

PR Newswire

2027 ...

Il y a 3 semaines

E-marketing

Ship-from-store : ba&sh multiplie ses ventes en ligne par 3,5

Ship-from-store : ba&sh multiplie ses ventes en ligne par 3,5 le premier jour des soldes. Publié par Clément Fages le 1 mars 2021 l Mis à jour le 5 mars 2021 à ...

Il y a 1 mois

...

X Voxlog

Electro Dépôt déploie le ship-from-store avec Woop

Depuis la mi-novembre, l'enseigne de multimédia et d'électroménager a pu déployer une solution de livraison ship-from-store depuis ses 81 ... 20 janv. 2021

Same Day Delivery Market Size to hit \$ 16739 Million by

The same day delivery is very fast process so to avoid mix-ups if product ordered before noon are delivered on same day otherwise next morning ...

Emerging quick markets

SFMTV

L'hypercroissance du E-commerce : un challenge pour les ... Le développement du « Ship from store » complexifie les plans de transport avec l'utilisation de plusieurs prestataires du dernier kilomètre. La ... ll y a 1 jour

PR Newswire

2027 ...

Il y a 3 semaines

E-marketing

Ship-from-store : ba&sh multiplie ses ventes en ligne par 3,5

Ship-from-store : ba&sh multiplie ses ventes en ligne par 3,5 le premier jour des soldes. Publié par Clément Fages le 1 mars 2021 l Mis à jour le 5 mars 2021 à ...

Il y a 1 mois

...

X Voxlog

Electro Dépôt déploie le ship-from-store avec Woop

Depuis la mi-novembre, l'enseigne de multimédia et d'électroménager a pu déployer une solution de livraison ship-from-store depuis ses 81 ... 20 janv. 2021

Same Day Delivery Market Size to hit \$ 16739 Million by

The same day delivery is very fast process so to avoid mix-ups if product ordered before noon are delivered on same day otherwise next morning ...

La Poste's Group organization

Historical role

Parcel delivery historical French main actor

International parcel express delivery

International oversize parcel delivery

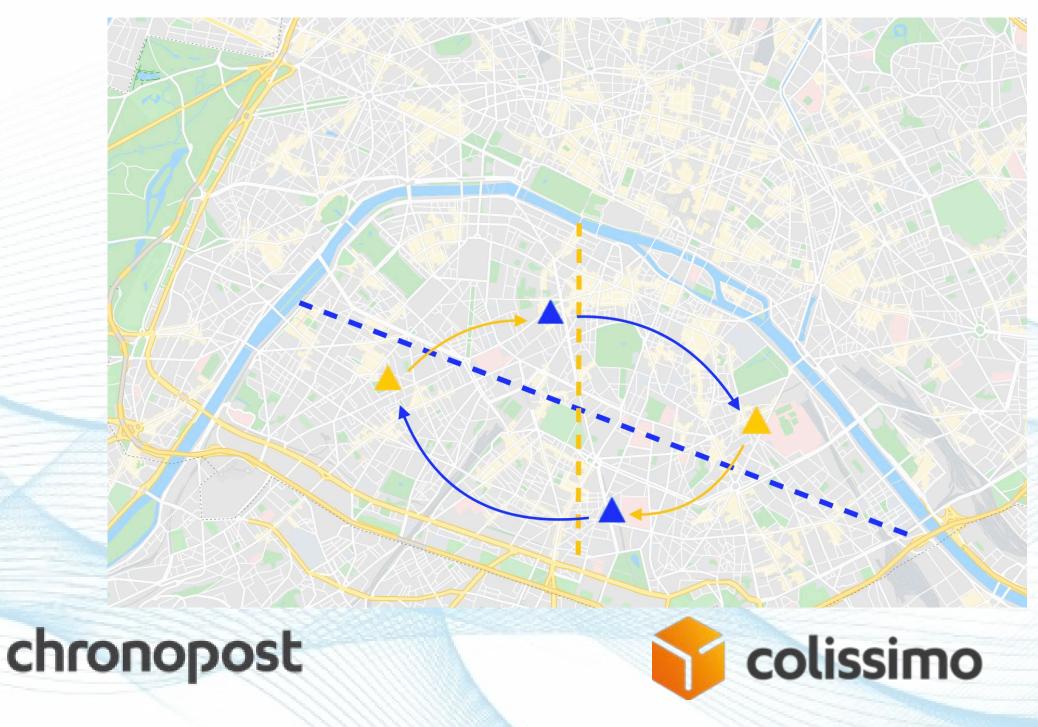
They all have an already established network, why not sharing it ?

La Poste's Group organization

La Poste has several twin companies, with their own already established networks

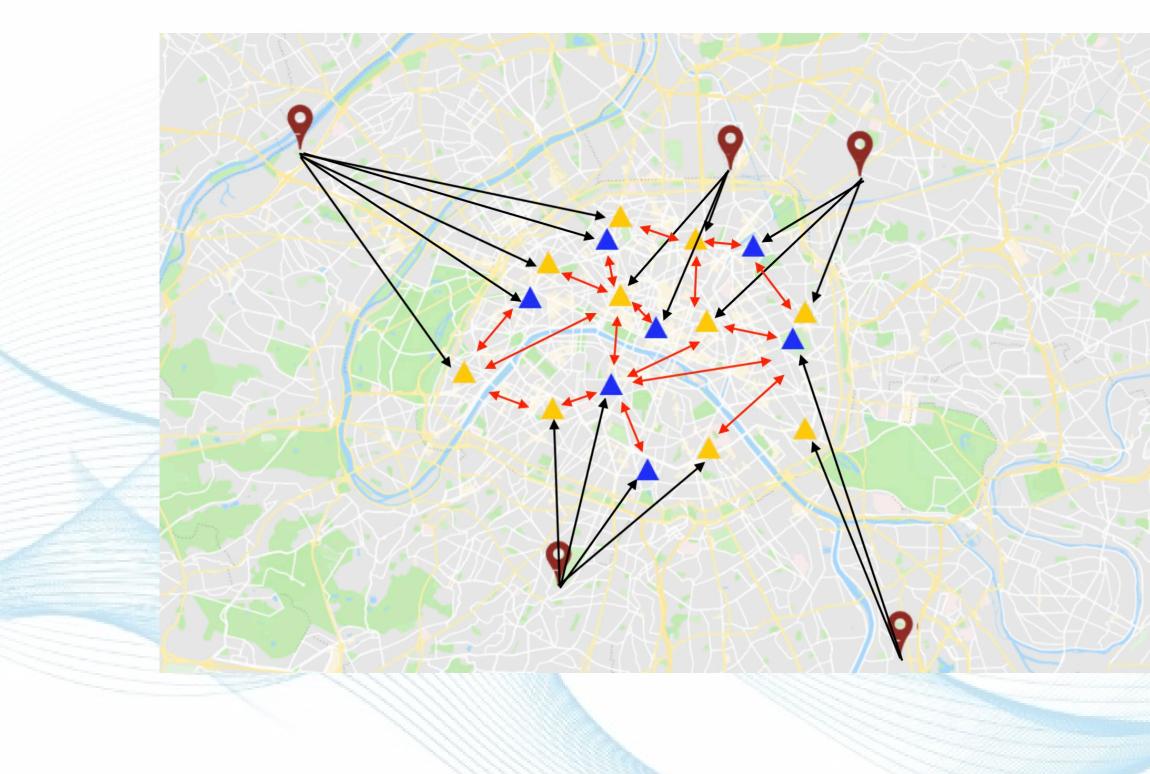


Natural overlapping

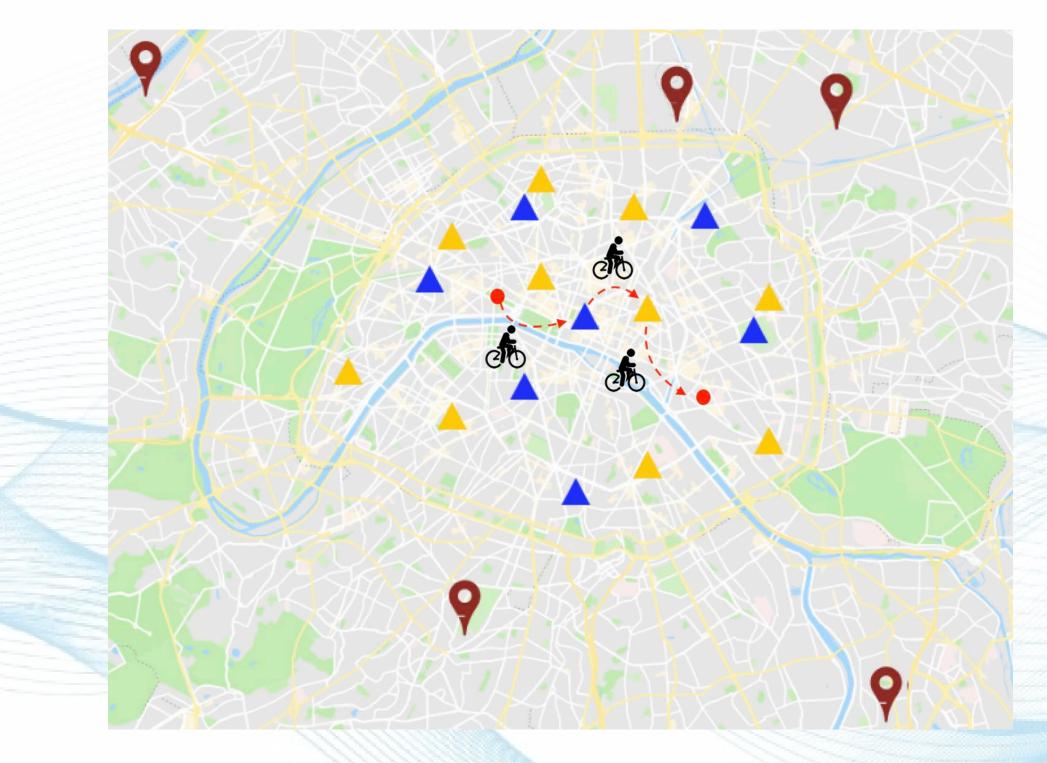


The introduction of new delivery methods allows a higher agility

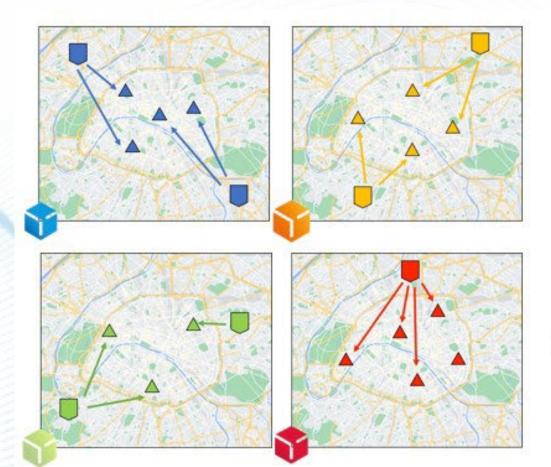
Introduction of interconnected networks

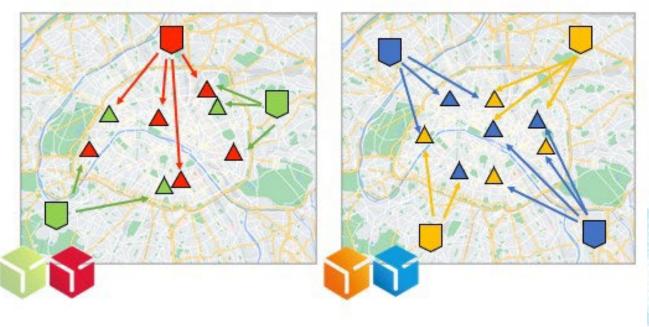


Introduction of interconnected networks



Idea of coalition formation

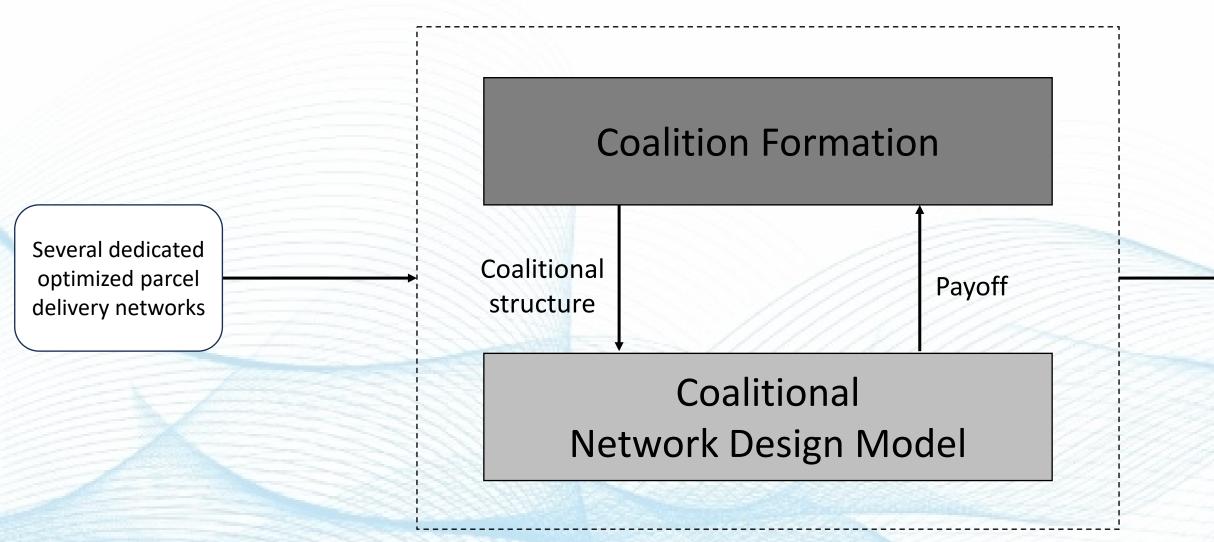




Set of coalitions of actors with shared parcel delivery networks

Set of delivery actors with their own dedicated parcel delivery networks

Coalitional Decision-Making Framework



- Which profitable coalitions? (1)
- How to design the coalitional network of each coalition (2)
- How to allocate the joint costs of the coalitional network between actors (3)

Stable coalitional parcel delivery networks

Coalitional Network Design

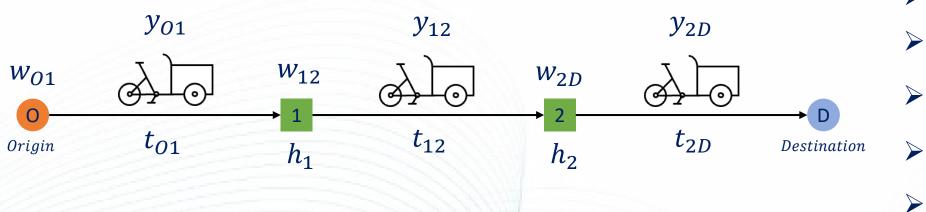
> Aim:

Design a coalitional urban parcel delivery network for a given coalition to enable tight delivery service • requirements in a cost minimization manner

Model and Decisions:

- Path-based IP and frequency-based model on a flat network
- Decisions
 - Which hubs to activate \rightarrow micro-hub network decisions •
 - How many vehicle dispatches along each arc per unit time \rightarrow vehicle frequency decisions

Modelling Delivery Service Requirements



- $\succ \tau_k$: Service requirements of O-D commodity k \succ t_a : Travel time on arc a
- \succ h_i : Hub processing time at micro hub *i*
- \succ y_a : # of cargo bikes over arc a per time unit

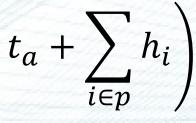
 \succ w_a : Dwell time before traversing arc a

Assumptions (Dayarian et al., (2022), Greening et al., (2022))

- Each O-D commodity arrives at its origin according to a uniform distribution >
- Cargo bikes are dispatched between locations according to a uniform distribution

⇒ Dwell time before traversing arc *a* is
$$w_a \sim \text{Uniform } (0, \frac{1}{y_a})$$
 with avg. of $\frac{1}{2} \cdot \frac{1}{y_a}$

$$\sum_{a \in p} t_a + \sum_{i \in p} h_i + \sum_{a \in p} \mathbb{E}[w_a] \le \tau_k \quad \Rightarrow \sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a} \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{\substack{i \in p \\ \text{Total allowable dwell time} \\ along path n for commodity k}} \right)$$



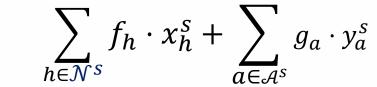
Coalitional Network Design Model with TDSR

> Data:

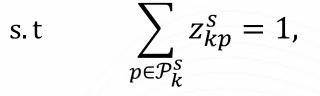
- S: Set of coalitions
- \mathcal{N}^{s} : Set of hubs for coalition $s \in \mathcal{S}$ •
- \mathcal{A}^s : Set of arcs for coalition $s \in S$ ٠
- \mathcal{K}^{s} : Set of commodities (O-D pairs) ٠ for coalition $s \in S$
- \mathcal{P}_k^s : Set of pregenerated paths for • commodity $k \in \mathcal{K}$ for coalition $s \in S$

\blacktriangleright Decisions for coalition $s \in S$:

- $x_h^s \in \{0,1\}$: Hub selection
- $y_a^s \in \mathbb{Z}_{\geq 0}$: # of CBs over arc a
- $z_{kp}^{s} \in \{0,1\}$: Path selection of commodity k



min



 $\sum_{k \in \mathcal{K}^s} \sum_{p \in \{p \in \mathcal{P}_k^s : a \in p\}} q_k \cdot z_{kp}^s \leq v \cdot y_a^s,$

$$\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a^s} \le \hat{\omega}_{kp} + M \cdot \left(1 - z\right)$$

$$Q_i^{min} \cdot x_i^s \le \sum_{a \in \delta^+(i)} y_a^s \le Q_i^{max}$$

$$Q_i^{min} \cdot x_i^s \le \sum_{a \in \delta^+(i)} y_a^s \le Q_i^{ma}$$

$\forall k \in \mathcal{K}^s$

 $\forall a \in \mathcal{A}^s$

 $\left(s \atop kp \right),$

 $\forall k \in \mathcal{K}^s, p \in \mathcal{P}_k^s$

$x \cdot x_i^s, \quad \forall i \in \mathcal{N}^s$

 $x \cdot x_i^s$,

 $\forall i \in \mathcal{N}^{s}$

Case Study

Table 1: Summary of parcel delivery actors

French urban megacity (Paris)				
 412 demand zones Order of 1.6 million parcels weekly across 52k origin- destination (O-D) pairs 	Delivery actor	# of Micro-hubs	Market Share	# of OD Commodities
 French parcel/postal company 3 subsidiaries of parcel delivery actors Each actor offers tight delivery service requirements 6,12,24,48-hour delivery 	1	19	60%	35591
	2	3	10%	6162
	3	8	30%	18105
 3 Cost-sharing methods to compute marginal cost Shapley cost allocation Weighted average of all marginal cost to all possible coalities 	ions			

- Proportional fairness allocation
 - Allocation proportional to total commodity volume
- Egalitarian allocation
 - **Equal Allocation**

Case Study: Cost-Sharing Methods

•

Input:

- S: Set of coalitions
- I: Set of actors
- I^s : Set of actors in coalition $s \in S$
- *M*: Set of cost-sharing methods
 - = {Shapley, PF, Eg}
- K_i : Set of commodities for actor i
- q_{ik} : Volume of commodity k of actor i
- $C_{i,s}^m$: Marginal cost of actor *i* in coalition *s*
 - for allocation method $m \in M$

Cost-Sharing Methods:

- Shapley Cost Allocation: ٠
- Proportional Fairness Allocation: $C_{i,s}^{PF} = \frac{C_s \cdot \sum_{k \in K_i} q_{ik}}{\sum_{i' \in I^s} \sum_{k \in K_i'} q_{ik}}$
- Egalitarian Allocation: $C_{i,s}^{Eg} = \frac{C_s}{|I^s|}$

$C_{i,s}^{Shapley} = \sum_{I_{i,s}} \frac{(|I^{s}| - |I|)! \cdot (|I| - 1)!}{|I^{s}|!} \cdot (C_{\bar{I}} - C_{\bar{I}\setminus i})$

Case Study: Global Network Design Performance

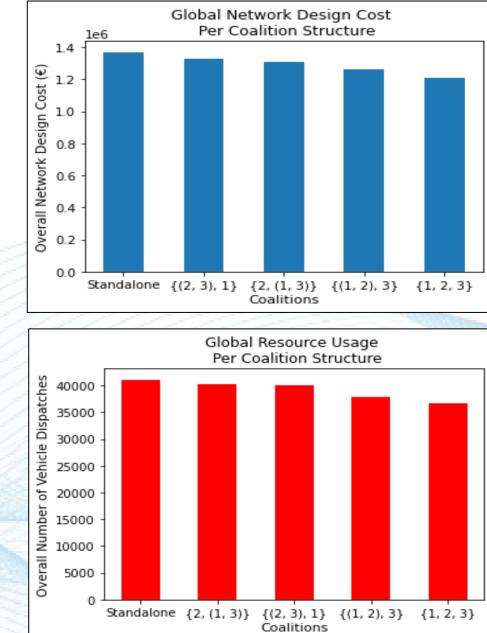
Table 1: Summary of Network Design of individual actors

Actor	#. of open MHs	No. O-D Commodi ties	Cost (€)
1	19	35591	830692.29
2	3	6162	124791.77
3	8	18105	414332.01

Table 2: Summary of possible coalitions

Coalition	# of potential MHs	# of open MHs	# of O-D Commodities	Description
(1,2)	19	19	41301	Coalition of Actors 1 and 2
(1,3)	27	26	52472	Coalition of Actors 1 and 3
(2,3)	11	11	24044	Coalition of Actors 2 and 3
(1,2,3)	30	28	57968	Grand Coalition

Figure 3: Global Network Design Performance



Case Study: Impact of Cost-Sharing Methods

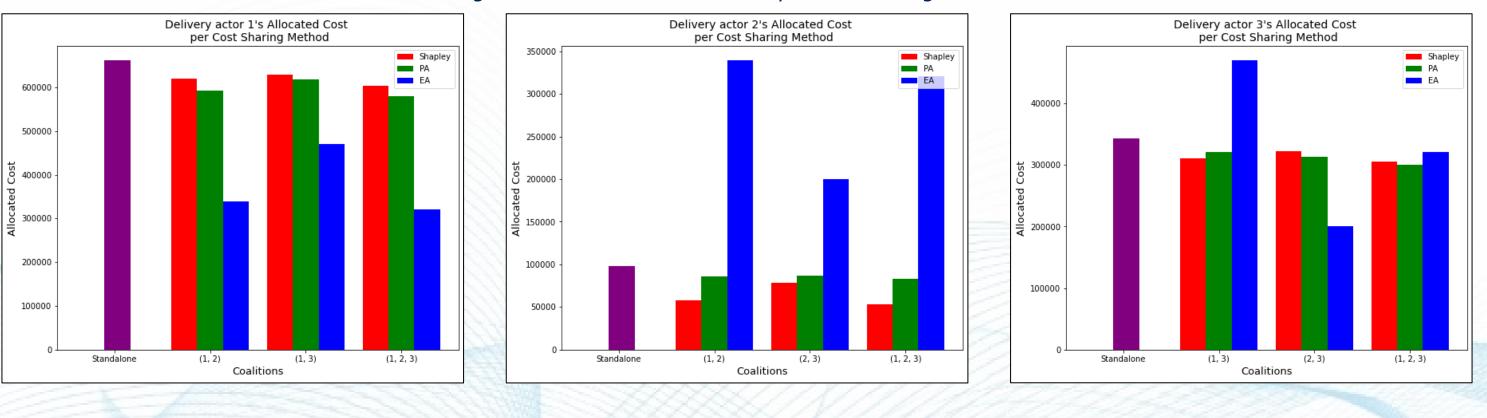
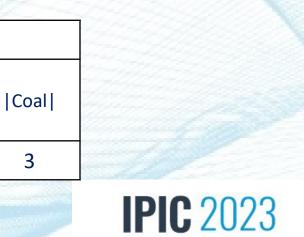


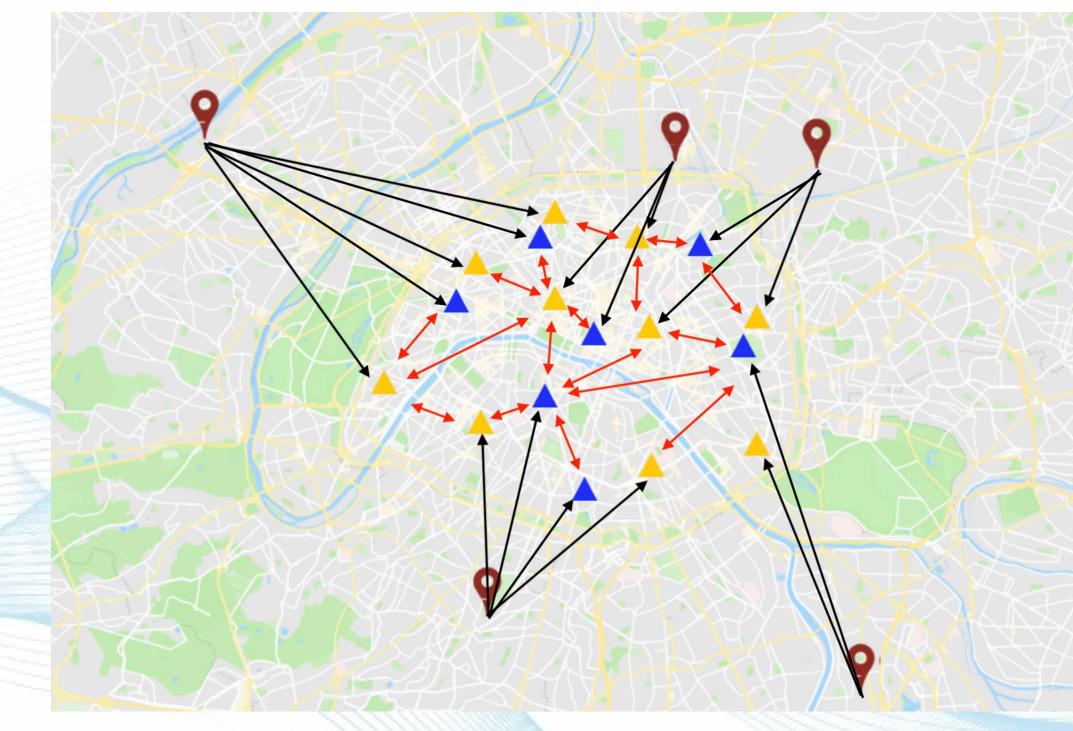
Figure 4: Allocated cost to actors per cost-sharing method

Table 3: Summary of coalitional decisions per cost-sharing method

Total	Shapley			Proportional (PA)			Egalitarian (EA)		
No. Coalitions	No. Cop. Actors	No. Prof. Coalitions	Coal	No. Cop. Actors	No. Prof. Coalitions	Coal	No. Cop. Actors	No. Prof. Coalitions	
7	3	5	1	3	5	1	0	0	



Type of connected networks



Simulation for Robust O-D Service Guarantees

Congestion created by a fixed number of vehicles and a rigid dispatch policy

: Starts every X minutes, either full or not.

Future work : introduction of robust policy

Thank you!

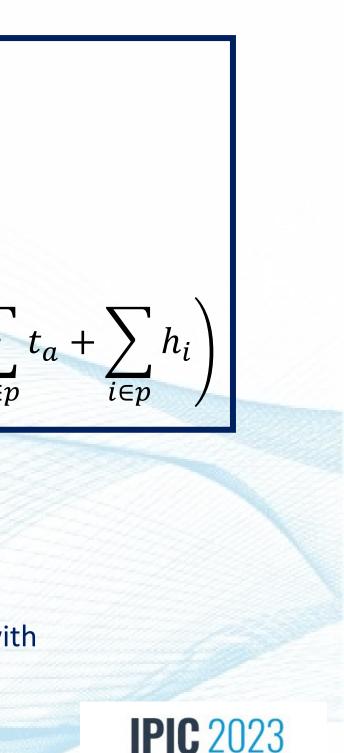
Questions: johan.leveque@laposte.fr

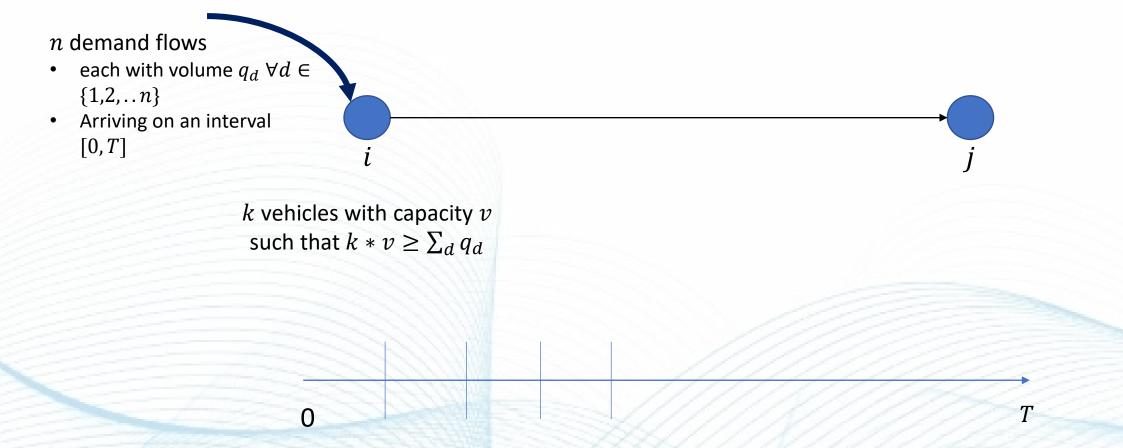
Assumptions (Dayarian et al., (2022), Greening et al., (2022))

- > Each O-D commodity arrives at its origin according to a uniform distribution
- Cargo bikes are dispatched between locations according to a uniform distribution
 - \Rightarrow Dwell time before traversing arc *a* is $w_a \sim$ Uniform $(0, \frac{1}{y_a})$ with avg. of $\frac{1}{2} \cdot \frac{1}{y_a}$

$$\sum_{a \in p} t_a + \sum_{i \in p} h_i + \sum_{a \in p} \mathbb{E}[w_a] \le \tau_k \implies \sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a} \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{2} \cdot \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{y_a}\right) \le \widehat{\omega}_{kp} = \tau_k - \left(\sum_{a \in p} \frac{1}{y_a}\right) = \tau_k - \left(\sum_{a$$

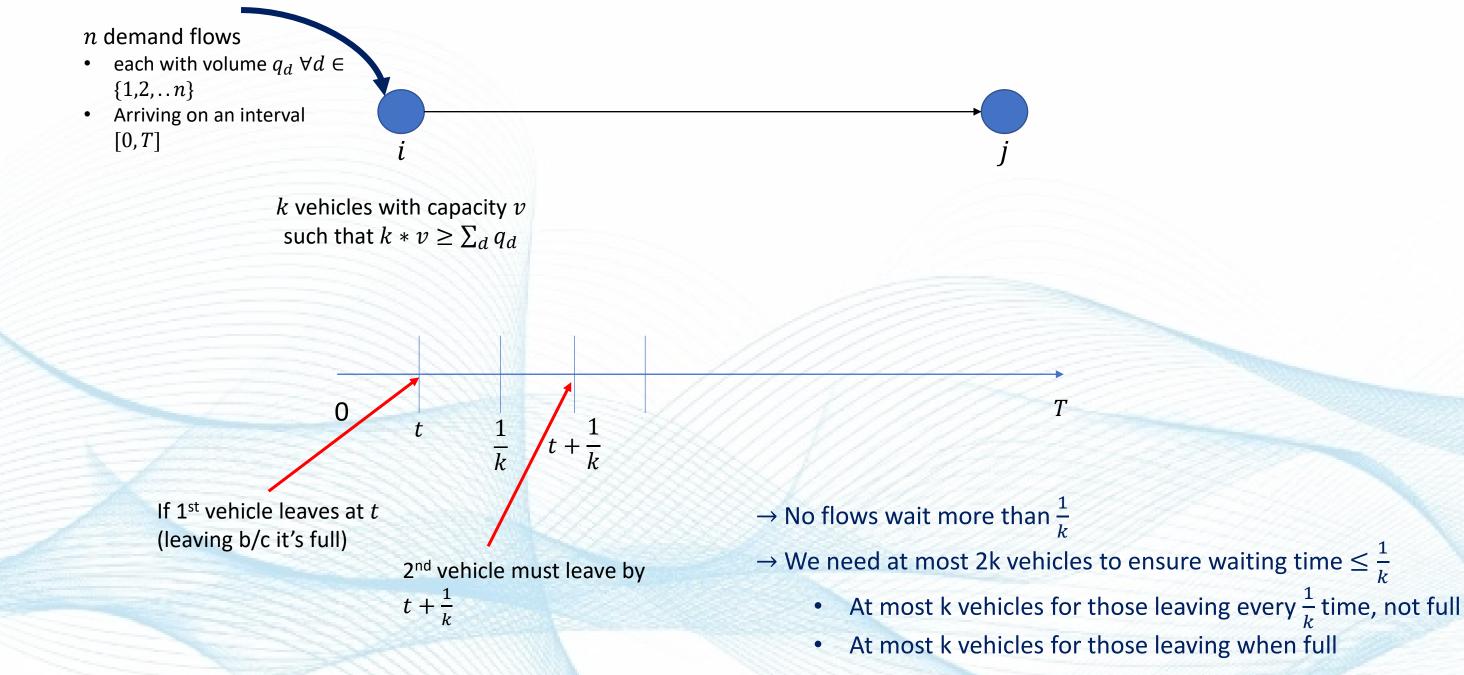
- Vehicle dispatches ⇒ Uniform distribution
 - Restrictive
 - Over-optimistic (50%) \Rightarrow not robust
- Q. Is there any other way to ensure robustness in O-D service guarantees with frequency variables?





Policy:

- 1st vehicle must depart either at the latest at $\frac{1}{k}$ time or when full
 - τ_i : departure time of vehicle *i*
- *ith* vehicle (∀*i* > 1) must depart either at the latest at *τ_{i-1}* + ¹/_k or when full

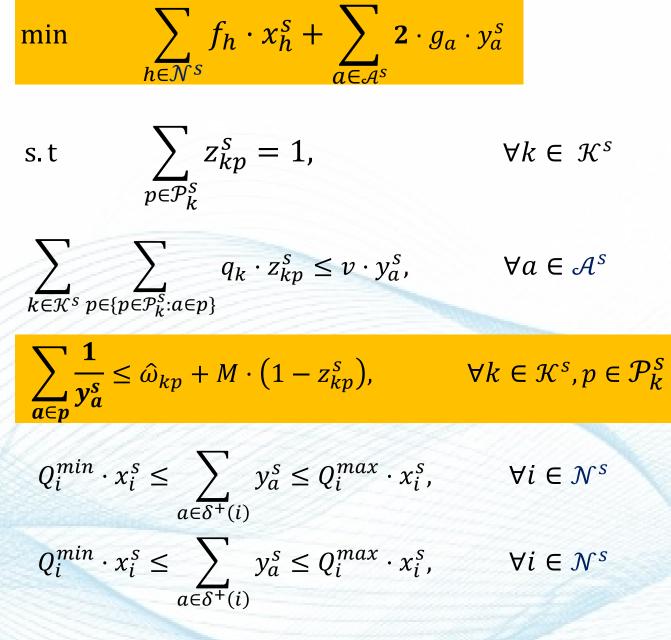


> Data:

- S: Set of coalitions •
- \mathcal{N}^{s} : Set of hubs for coalition $s \in \mathcal{S}$
- \mathcal{A}^s : Set of arcs for coalition $s \in \mathcal{S}$ •
- \mathcal{K}^{s} : Set of commodities (O-D pairs) ٠ for coalition $s \in S$
- \mathcal{P}_k^s : Set of pregenerated paths for commodity $k \in \mathcal{K}$ for coalition $s \in S$

\blacktriangleright Decisions for coalition $s \in S$:

- $x_h^s \in \{0,1\}$: Hub selection
- $y_a^s \in \mathbb{Z}_{\geq 0}$: # of CBs over arc a
- $z_{kp}^{s} \in \{0,1\}$: Path selection of commodity k



$\forall k \in \mathcal{K}^s$

 $\forall a \in \mathcal{A}^s$

- > Theoretically, having twice more vehicles leads to 100% O-D service guarantees
 - Too conservative?
 - What would happen if we only increased # of ٠ vehicles by k times?
 - *k* < 2
- Experiments for robustness in O-D service guarantees through simulation
 - Impact of different k (= 2, 1.9, 1.7, 1.5, ..) on • robust O-D service guarantees

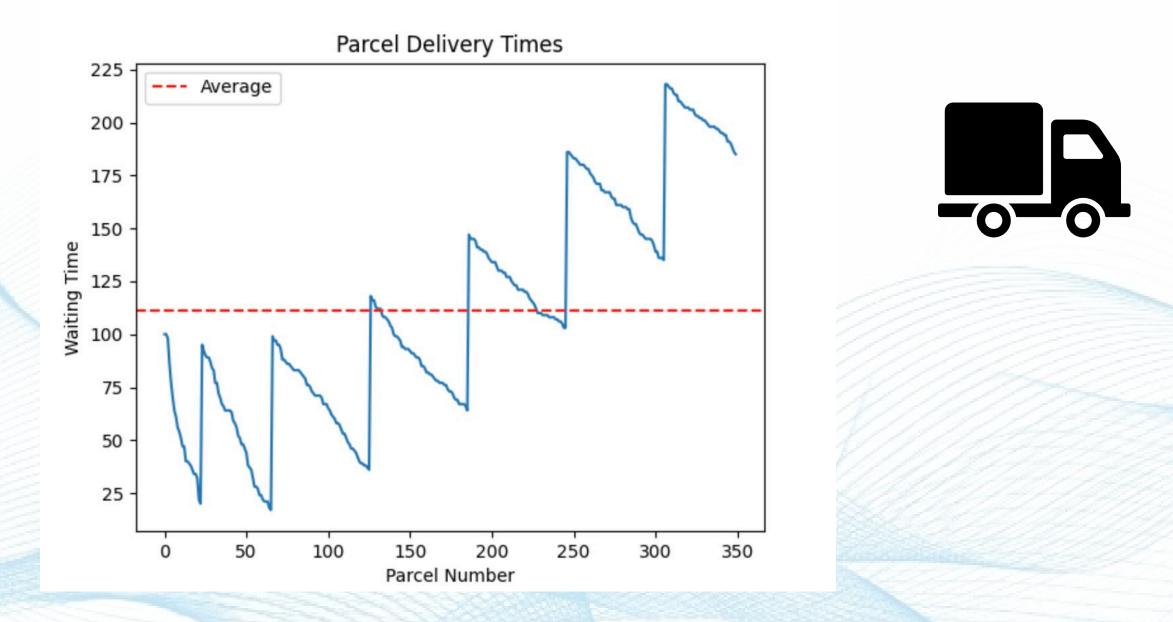


what if k < 2?

$\forall k \in \mathcal{K}^s$

 $\forall a \in \mathcal{A}^s$

Simulation for Robust O-D Service Guarantees



Congestion created by a fixed number of vehicles and a rigid dispatch policy

: Starts every X minutes, either full or not.

Simulation for Robust O-D Service Guarantees



Adapted policy, delivery times are highly reduced due to an increased and flexible frequency

: Starts either when full or when it's time \rightarrow Suppose to have twice the number of trucks.

Is this really twice in practice ?

