IPIC 2024

10th International Physical Internet Conference

May 29-31, 2024 | Savannah, GA USA

Welcome Day 3

Silver Sponsors

IPIC 2024

10th International Physical Internet Conference

May 29-31, 2024 | Savannah, GA USA

Plenary Session F-1: Toward Physical Internet Enabled Hyperconnected City Logistics

Louis Faugere, Sr. Applied Scientist, Amazon, USA (Moderator)

9:00-9:30am | Cumberland Ballroom

Unlocking the Future of Last Mile Delivery: Automated, Smart, Secure & Sustainable Solutions Right to Your Doorstep

David Ruth, CEO, MOTOGO Systems, USA

9:30-10:00am | Cumberland Ballroom

Toward Hyperconnected City Logistics - On-Demand Synchromodal Urban Delivery Service Project in Bordeaux, France

Olivier Labarthe, Kedge Business School, France

10:00-10:40am | Cumberland Ballroom

Panel Discussion

Louis Faugere, Eric Ballot, Rod Franklin, Olivier Labarthe, David Ruth (Panelists)

10:40-11:00am Break

IPIC 2024

10th International Physical Internet Conference

May 29-31, 2024 | Savannah, GA USA

Unlocking the Future of Last Mile Delivery: Automated, Smart, Secure & Sustainable Solutions Right to Your Doorstep

Enhanced Smart and Secure Parcels for PI Metropolitan, Localize Fulfilment of Goods!

David Ruth

CEO & Founder Motogo

Toward Hyperconnected City Logistics On-Demand Synchromodal Urban Delivery Service Project in Bordeaux, France

Olivier LABARTHE

Urban Logistics Living Lab.

The Centre of Excellence for Supply Chain Innovation & Transportation (CESIT)

KEDGE Business School, Bordeaux, France

May 31st, 2024

BORDEAUX METROPOLE, FRANCE

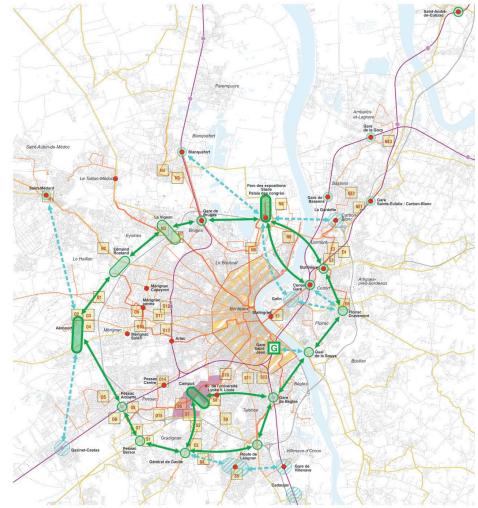
Bordeaux Métropole : 28 municipalities

Population: 830 000

(Bordeaux: 256 000)

+15% in 10 years

France's 4th largest metropolis


Area: 578 km²

MOBILITY CHALLENGES

A network centred on people mobility

Source : a'urba, Bordeaux Métropole, 2024

A negative perception of urban logistics

Freight transport is the responsibility of private operators, local authorities are not a "public operator".

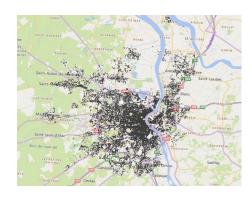
Local authorities play a regulatory, planning and facilitating role: traffic and parking, road planning, economic development.

11am – city center

Reducing congestion
Improving air quality
Making public spaces safer
Eliminating negative externalities (noise)
Ensuring deliveries access

A "wall of trucks" on the Bordeaux ring road

IPIC 2024


AN EXPERIMENTAL TERRITORY

Micro-hubs, 2003

Urban freight survey, 2012-13

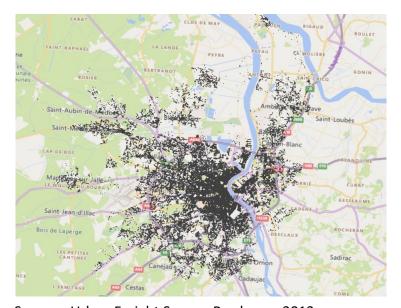
Tram freight pilot, 2015

Delivery by night, since 2016

Delivery by drone pilot, 2018

Cargo bikes, since 2020

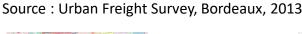
Waterway delivery pilot, 2021-22



Low emission zone survey, 2023

A TERRITORY OF DATA

94,000 operations (picking & deliveries) everyday70,000 B to B (economy generating logistics flows)24,000 B to C (home delivery, lockers, click & collect...)

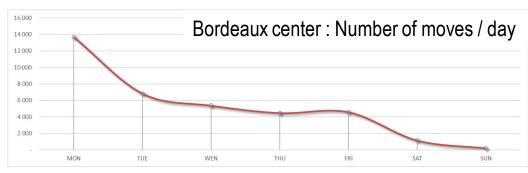


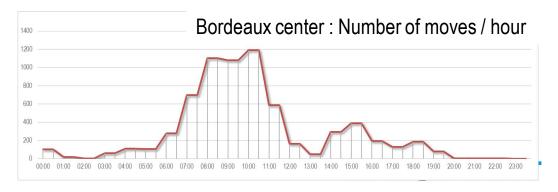
37%

9%

ASANT SQUARE

VOTOSI


WESTANDER


VOTOSI

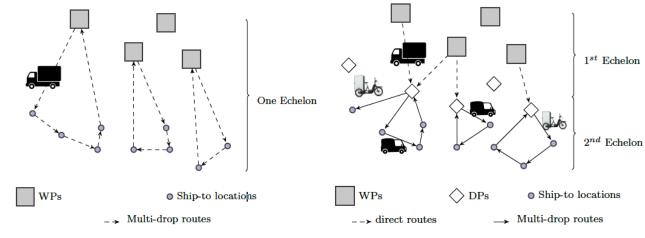
SANT MICHEL

SAN

Parcel density (source : V. Salphati, 2023)

A LOW EMISSION TERRITORY


Cargo-bikes: 24/7


Access is prohibited with retractable bollards to ensure pedestrian safety

(Source : T. Baladon, 2023)

Deliveries are authorized between 7am and 11am, and limited to vehicles under 7.5 tons

(Source : opendata.Bordeaux-metropole.fr "Borne d'accès")

(a) One-echelon distribution network

(b) Two-echelon distribution network

(Source: I. Ben Mohamed et al., 2023)

(Source: J. Leveque et al., 2023)

IPIC 2024

AN URBAN LOGISTICS TERRITORY

In May 2023, Bordeaux Métropole approved a new roadmap for the next 3 years.

Selected actions are grouped around the following areas:

- Integrating logistics flows in the city,
- Limiting emissions generated by logistics,
- Welcoming logistics activities in the city,
- Defining governance and spaces for exchange,
- Supporting start-ups.

OUIDROP: Designer of a robotic click & collect solution to provide a fully automated 3D storage space.

(Source : ouidrop.fr)

CONNECTING TRANSPORTATION SYSTEMS

Designing more efficient and sustainable urban logistics

Encapsulating goods in smart easy-to-handle and modular PI-containers

Enabling the emergence of Urban Logistics Webs

Van/trailer – Cubicycle Source : DHL Group, 2016

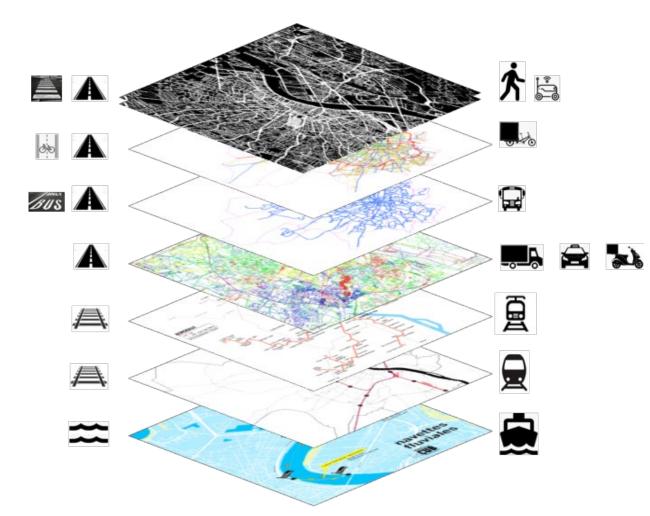
Truck – Cargo Bike City-Hub Rytle, 2018

Tramway - Cargo Bike LastMileTram, 2019

Barge – Cargo Bike, VNF, France, 2020

The Hub Company, 2022

MULTILAYER URBAN INFRASTRUCTURE



Hyperconnected City Logistics calls for novel approaches

Planning and responding for capacity and resources aligned with the emerging urban needs and challenges

Relying on the potential of exploitation of a network of networks

Source: O. Labarthe, G. Ahmadi, W. Klibi, J.-C. Deschamps, B. Montreuil, A sustainable on-demand urban delivery service enabled by synchromodality and synergy in passenger and freight mobility, *Transportation Research Part C: Emerging Technologies*, Vol. 161, 104544, 2024.

MULTIMODAL URBAN MOBILITY

Underutilized spare capacity in public transportation

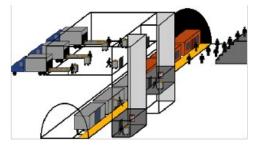
Different transportation modes

Multitude of mobility options in urban areas

+

Spare capacity in public transportation

How to transship goods based on the joint use of public transport modes and on-demand freight modes?


Synergies between Freight and People mobility

TRAM-FRET Pilot, Bordeaux, France, 2015.

Combined Passenger-Cargo, Miyazaki, Japan, since 2014.

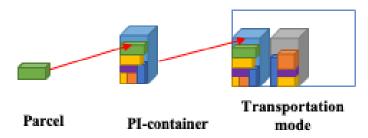
Subway Delivery (Montreuil et al., 2018)

URBAN PARCEL DELIVERY CONSIDERING TRAMWAY

Passage porte simple

AFFICHEUR EXTERIEUR

6119.

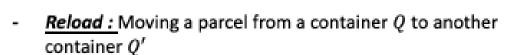


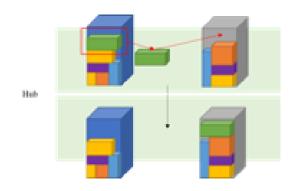
iom.

AFFICHEUR INTERIEUR

AFFICHEUR EXTERIEUR

AFFICHEUR EXTERIEUR




Parcel container,

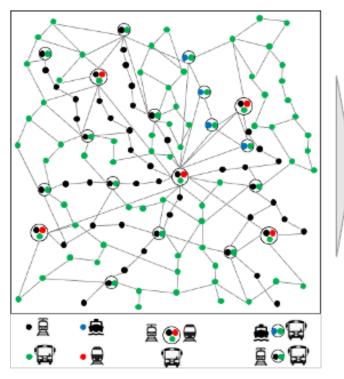
Source: project-mo.de, 2020.

Transshipment: Moving a container from a mode

m to a mode m'Actival of a transportation. mode in Transit pode Actival of a transportation. mode of

AFFICHEUR INTERIEUR

HCL INTEGRATING PEOPLE MOBILITY **NETWORKS**



Investigates the feasibility of goods transshipment with a joint usage of public mobility and freight urban vehicles

Assess the potential benefit of a joint mobility system for goods delivery in urban areas

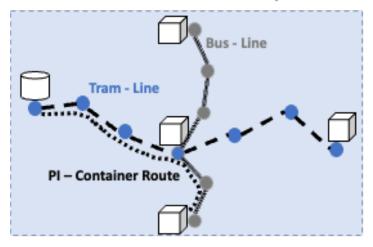
Multi-layer representation of the scheduled public transportation network

Urban area interaction network for passengers

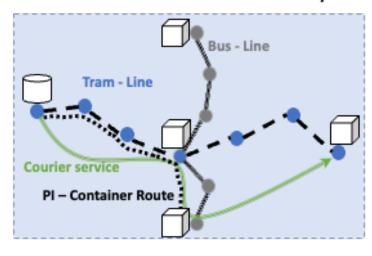
Hyperconnected transshipment based on people mobility networks

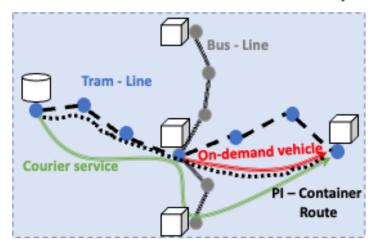
- Transhipment Hub
- Transhipment Cross-Docking Hub
- ((a) Transhipment Cross-Docking Sorting Hub

HYPERCONNECTED URBAN SYNCHROMODALITY


Freight Mobility (excluding Air)

		Multimodality (Traffic-centered)	Intermodality (Loading units-centered)	Urban Synchromodality (Time-centered)
		# of planned freight modes = 2	# of planned freight modes = 2	# of transportation modes =2
Hyperconnectivity	Low	Waterway-Rail OR Waterway-Road OR Rail-Road	Combined Transport Road usage as short as possible (Waterway-Road) OR (Rail-Road) Co-modality Optimal & sustainable utilisation of resources	Planned dedicated freight mode (Waterway or Rail or Road) On-demand freight mode (Waterway or Rail or Road)
lyper			(Waterway-Rail) OR (Waterway-Road) OR (Rail-Road)	Scheduled Public transport mode (Waterway or Rail or Road)
		# of planned freight modes > 2	# of planned freight modes > 2	# of transportation modes > 2
Network-based	High	Waterway & Rail & Road	Combined Transport Road usage as short as possible Waterway & Rail & Road	Planned dedicated freight mode (Waterway or Rail or Road) On-demand freight mode
Ne	_	waterway & Nan & Noau	Co-modality Optimal & sustainable utilisation of resources Waterway & Rail & Road	(Waterway or Rail or Road) Scheduled Public transport mode (Waterway or Rail or Road)


MULTIMODAL ON-DEMAND TRANSSHIPMENT


Public scheduled transport

Multimodal scheduled delivery

Multimodal & on-demand delivery

Local hub

Rail Tram

Road

Road

On-demand vehicle

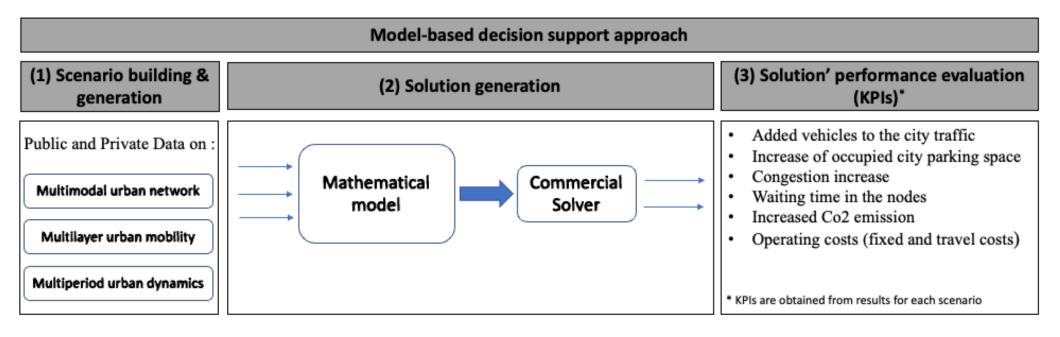
Access hub

Road

Bus

Courier service

PI – Container Route

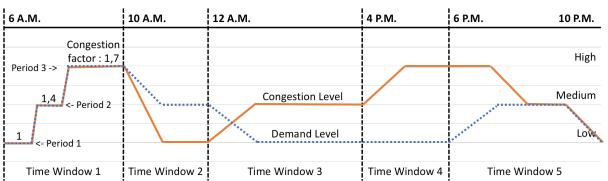

Multiple transportation options for each PI–Container.

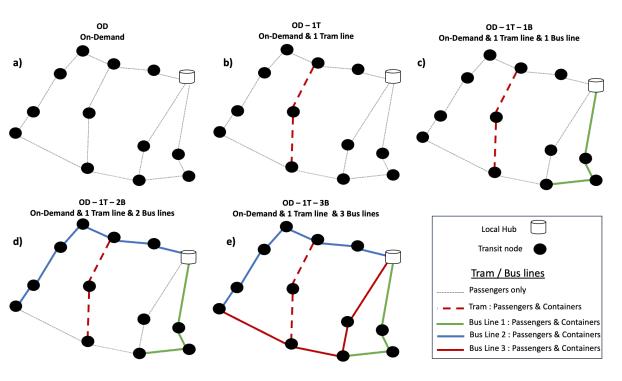
More possibilities to satisfy due dates.

THREE-PHASE DECISION SUPPORT APPROACH

Minimize the impact of containers' journey in the time and space of urban transport network.

The objective considered in this planning problem is to commit to a high service level (all requests delivered before the due date) with the minimum urban footprint.

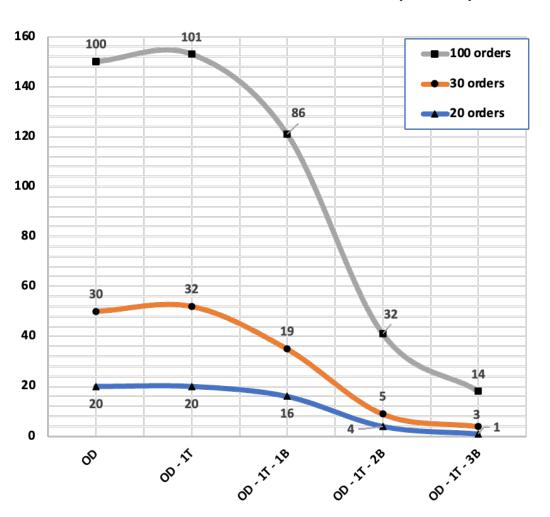



CASE STUDY OF THE CITY OF BORDEAUX

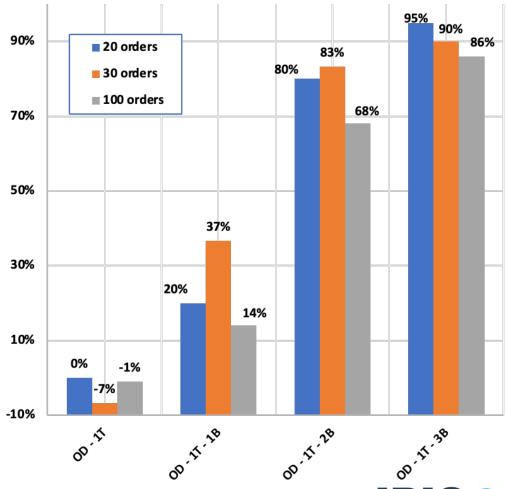
Travel-time based on transport mode and congestion factor.

Capacity of each transportation mode vary during the day.

Capacity decrease with the increase of congestion level.

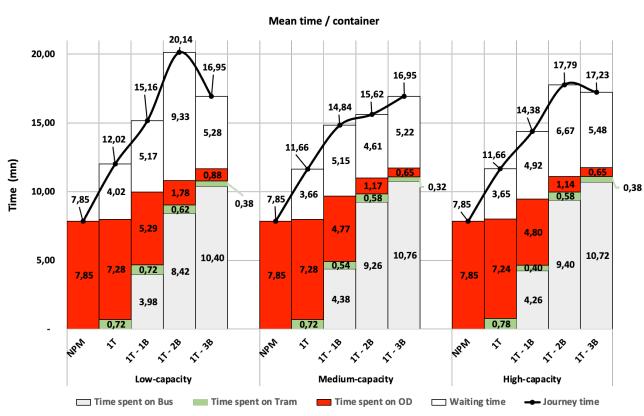

IPIC 2024

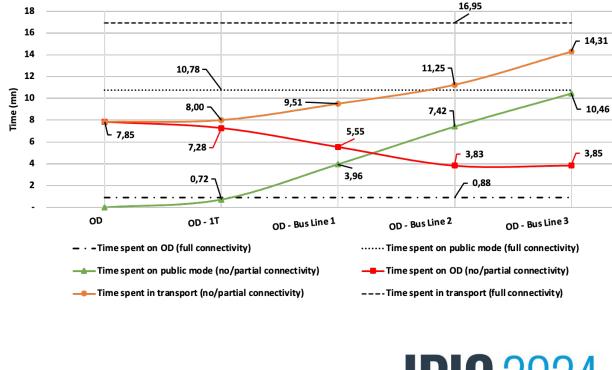
IMPACTS OF NETWORK CONNECTIVITY



Number of moves with On-Demand (Heuristic)

On-Demand moves reduction (Heuristic)


IMPACT OF TRANSPORT CAPACITY



Transportation mode capacity (Container)

Public transportation mode	Low-capacity level	Medium-capacity level	High-capacity level			
Tram	8	20	25			
Bus	8	15	25			
On-demand vehicles						
Cargo bike	1	1	1			
Van	1	1	1			

Impact on time spend in transport mode

CONCLUSIONS AND PERSPECTIVES

New approach for urban freight transshipment based on joint use of on-demand mode and public transport

The role of synchromodality reducing parcels footprint and congestion levels

Extending the model to consider several local hubs, more vehicle types/services in an on-demand mode

MOBILE

Micro-depots UPS, Hamburg, Germany, 2012.

Mobile depot TNT Express, Brussels, Belgium, 2013.

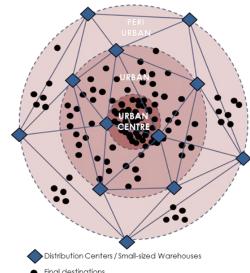
CubiVan, City-Hub, Germany, 2017.

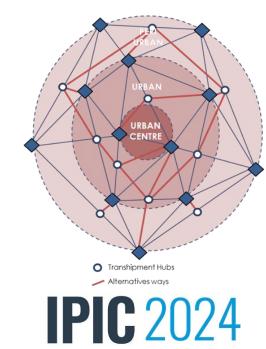
City-Hub Rytle, Source: DHL Group, Source: Krone Group, Germany, 2018.

STATIONARY

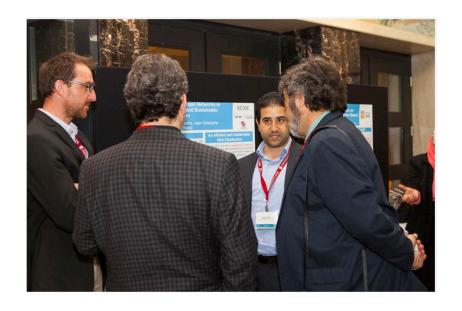
Micro-platform project, Bordeaux, France, 2003.

Micro-platform project, Barcelona, Spain, 2014.


KoMoDo project, open micro hub. Berlin, Germany, 2018.


Micro depot in public spaces, source: DPD, Germany, 2019.

Micro-hub, Paketin GmbH 2020.



Final destinations

Towards a hyperconnected city Logistics: already addressed ten years ago

Thank you for your attention

IPIC 2024