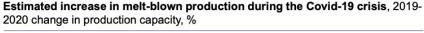
VALUE OF PHYSICAL INTERNET-DRIVEN COLLABORATIVE MANAGEMENT IN MULTI-ACTOR SUPPLY AND DISTRIBUTION NETWORKS

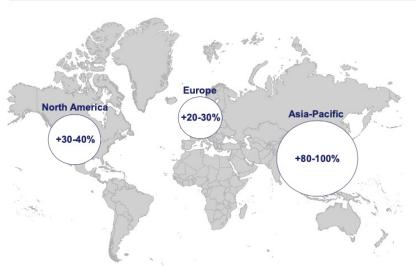
Ashwin S. Pothen, Sahrish Jaleel Shaikh, Benoit Montreuil H. Milton Stewart School of Industrial & Systems Engineering Georgia Institute of Technology

IPIC 2024

May 31, 2024

Motivation




Societally Critical Products are essential to the well-being and functioning of society. Their availability has a high impact on economic activity, social welfare and health and whose supply is subject to scarcity, uncertainty, disruptions and threats.

- High impact on industries that provide items that are essential for the health and well-being of all
- High dependency on international trade to get access to these goods

Source: https://www.myamericannurse.com/survey-nurses-fear-going-to-work-due-to-lack-of-protection-from-virus/

Source: https://www.ifc.org/wps/wcm/connect/1d32e536-76cc-4023-9430-1333d6b92cc6/210402_FCDO_GlobalPPE_Final+report_v14updated_gja.pdf?MOD=AJPE RES&CVID=nyiUnTU

Source: https://www.theguardian.com/business/2021/oct/20/supply-chain-crisis-california-ports-cargo-ships

Motivation

- During the COVID-19 pandemic, demand for critical consumables skyrocketed while the supply was scarce due to limited production capacity
- Demand-induced scarcity is caused by panic-buying consumers who exhibit hoarding behaviour under conditions of perceived scarcity
- In such a disruption, suppliers display a high variance where deliveries may be late, made in entirety or partially, or may not be made at all. In short, the suppliers may not be able to hold the promise of delivery.

Our Approach: A Living Lab Initiative

Controlled Strategies

Strategies that should be in place during undisrupted supply

Contingency Strategies

Strategies that can be used during periods of anticipated shortages

Crisis Strategies

Strategies that can be used when supplies are highly disrupted

An end-to-end integrated and shared supply and distribution system of personal protective equipment to safely continue essential operations amid the pandemic

- Develop & provide user protocols
- Consider consumption behavior
- Inclusive and participative
- Minimal burden on users
- Guarantee access to PPE while maintaining lean inventory
- Minimize extra labor
- Seamless persistent response
- Persistent protection of users during Covid-19
- Minimize contact
- Safe packaging

Our Living Lab Approach – Key Aspects

Value:

Focus on understanding needs and motivators

Influence:

Input from stakeholders is used

Sustainability:

Continuous Learning

Openness:

Engagement of multi stakeholders to participate

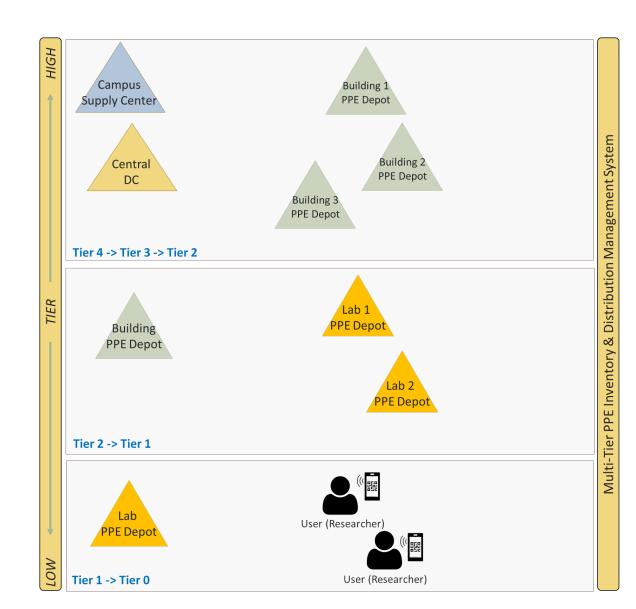
Realism:

Make real world implementations and simulations

Proposed System Layers

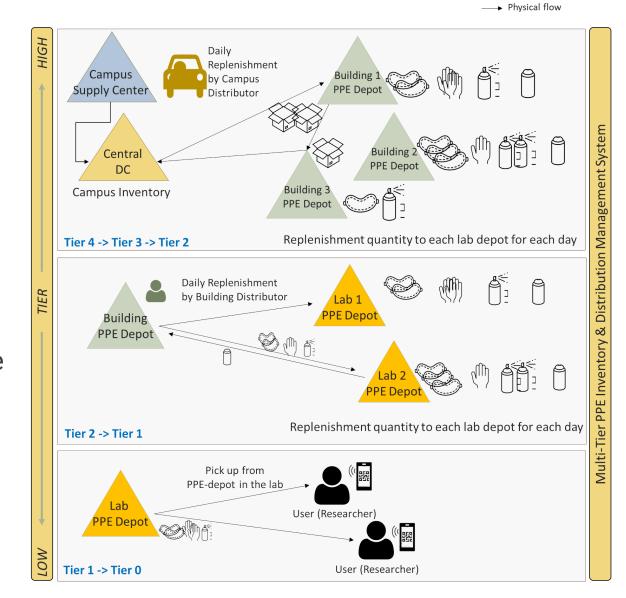
- Organizational layer: Four-tier network of functional nodes and their responsibilities
- **Informational layer:** Emphasizes information sharing for effective coordination
- **Decisional layer:** Governance framework for decision-making and resource allocation

Physical Layer



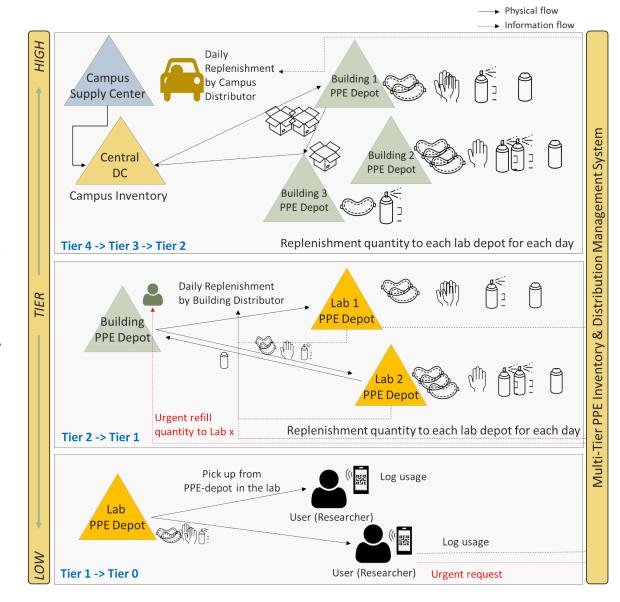
- Multi-tier physical network structure
- Physical nodes → facilities active in the system
- Tiers include tier-0, tier-1, tier-2, tier-3, with higher tiers possible

Organizational Layer

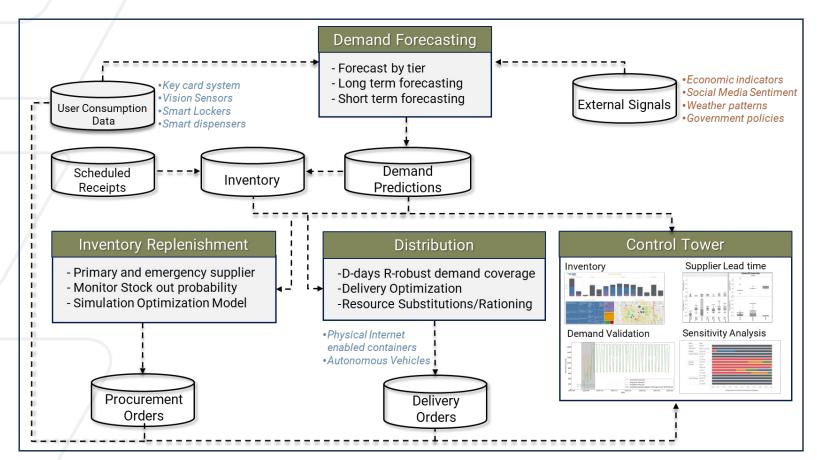


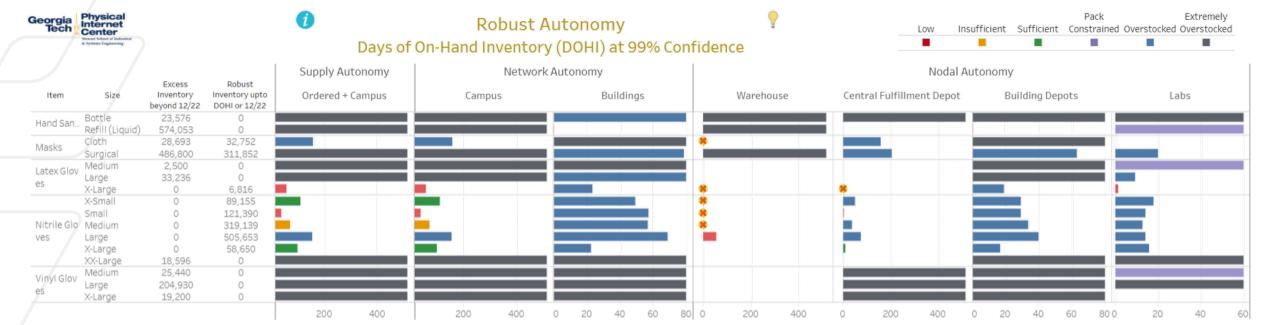
- Functional nodes and their responsibilities
- Tier-1 lab depots
 - → Nano-fulfillment centers in each lab
- Tier-2 building depots
 - → Micro-fulfillment centers for lab depots
- Downstream flows are usual
- Lateral and upstream flows allowed in some cases

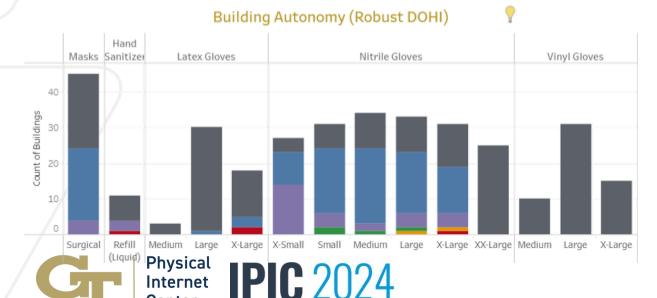
Informational Layer

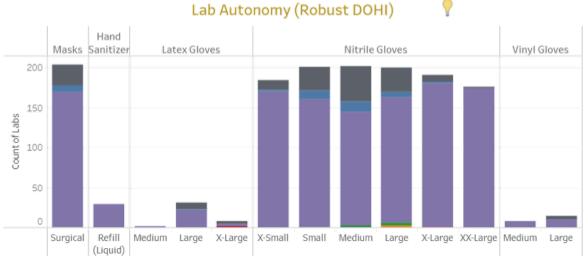


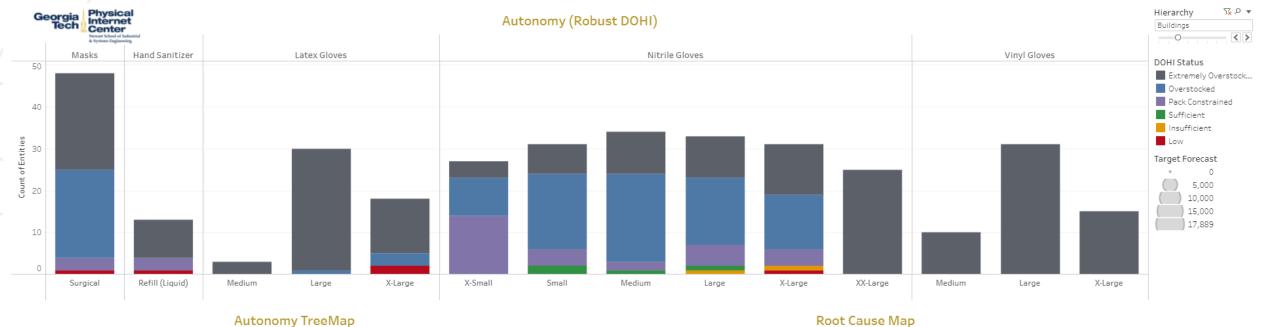
- Information sharing for effective coordination
- User data and resource burn rates are crucial
- Electronic key card systems used for access authorization and location estimation
- ServiceNow platform facilitates reporting on PPE consumption and inventory
- Appropriate data dissemination crucial for stakeholders

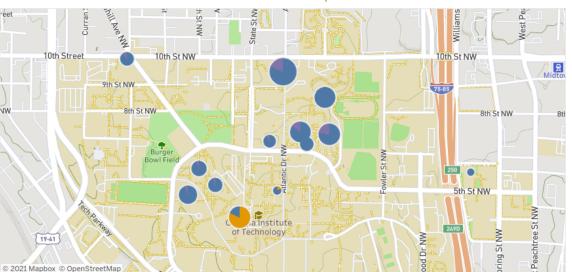

Decisional Layer


- User data used to update demand forecasting models
- Inventory at each tier evaluated with respect to forecasted inventory days
- Campus supply center triggers supply re-orders, accounting for lead time uncertainty
- Decisional layer enables effective governance and resource allocation


System Performance




Performance Measures

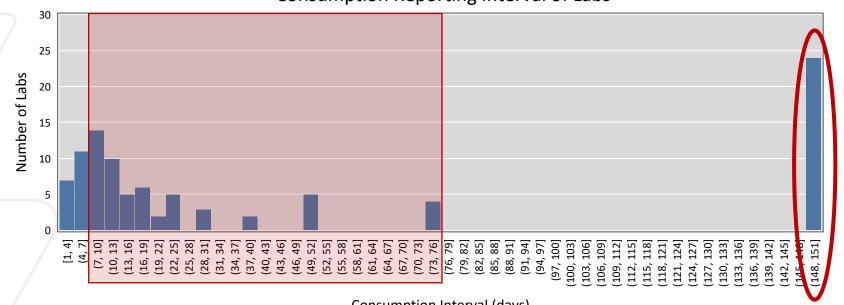


Autonomy TreeMap

Roger A. and Helen B. Krone Engineered Biosystems Building	Ford Environmental Science and Technology Building	Fuller E. Callaway Jr. Manufacturing Research Center Building		U.A. Whitaker Biomedical Engineering Building	Roger A. and Helen B. Krone	Ford	575
Molecular Science & Engineering Building	J. Erskine Love Jr. Manufacturing Building	Paper Tricentennial Building			H. Petit Gilbert Hillhouse Bog Building		gs
Parker H. Petit Biotechnology Building	Bunger-Henry Building	Marcus Nanotechnology Building	Joseph M. Pettit	Jesse			
		Cherry L. Emerson Building	Blake R. Van Leer		Paul Weber		

Internet Center IPIC 2024

Challenges



- Lack of consumption reporting discipline
- Lack of transaction reporting discipline

Consumption Interval	% of Labs
≤7 days	17%
≤14 days	44%
≤30 days	64%
≤45 days	66%
≤60 days	71%
≤75 days	76%
>75 days	24%

Consumption Interval (days)

Some users did not record transactions rigorously → system unable to develop better predictions

Challenges

- Lack of consumption reporting discipline
- Lack of transaction reporting discipline
- Workload burden on distribution staff
- Inability to split stock-keeping units (SKUs)

PPE distribution to Building Depots from Campus Depot

Enabling Technologies

Be a responsible
Yellow Jacket and
help us ensure
adequate
stock

THE π -containers

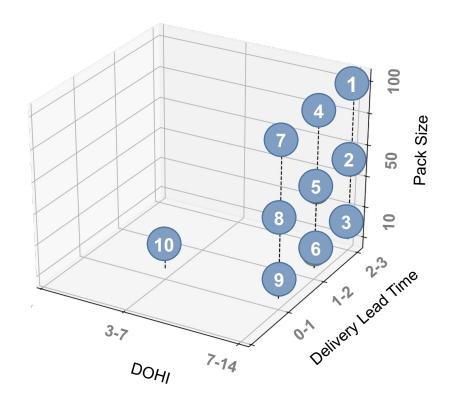
Containers in Physical Internet that are smart, eco-friendly and modular, ranging from the size of a small box to ocean container.

 $\pi-$ containers are assigned a unique MAC address and digitally interconnected through the Internet of Things for monitoring and routing.

!	Challenges						
Technologies	Consumption Reporting Discipline	Transaction Reporting Discipline	Workload on Distribution Staff	Split Stock-keeping Units (SKUs)			
Modular π - Containers		⊗	⊗				
Vision Sensors	©						
Smart Dispensers	⊗	⊗	⊗	⊗			
Smart Lockers	©	\odot	⊗				
Drones, Droids and Robots			⊗	⊗			

Proposed enabling technologies to meet the challenges

Scenarios



Primary variables under investigation:

- Reduction in delivery lead time -> attributed to autonomous mobility solutions
- Decrease in pack size → enabled by the adoption of smart lockers and robotic operations

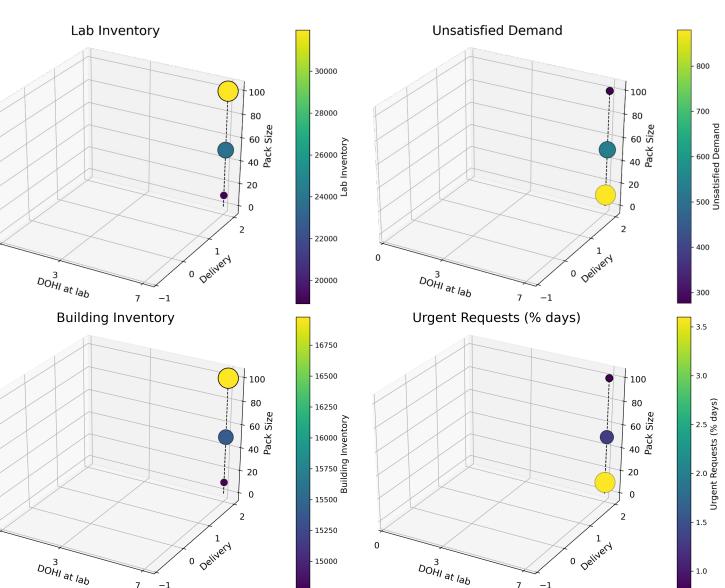
Scenario	DOHI (Lab, Building)	Delivery Lead Time (To Lab, Building)	Pack Size
1	7-14	2-3	100
2	7-14	2-3	50
3	7-14	2-3	10
4	7-14	1-2	100
5	7-14	1-2	50
6	7-14	1-2	10
7	7-14	0-1	100
8	7-14	0-1	50
9	7-14	0-1	10
10	3-7	0-1	10

Varying Pack Sizes Potential Impact

By reducing pack size from 100 to 10 units:

- •12.7% ↓ in building inventory
- •40.2% ↓ in lab inventory
- Higher unsatisfied demand observed (0.015% vs. 0.005% of total demand)

Pack Size	Building Inventory (Units)	Lab Inventory (Units)	Unsatisfied Demand	Unsatisfied Demand (%)	Urgent Requests (% days)
10	14,762	18,893	880	0.015%	3.6%
50	15,386	23,833	536	0.009%	1.3%
100	16,978	31,971	277	0.005%	0.8%



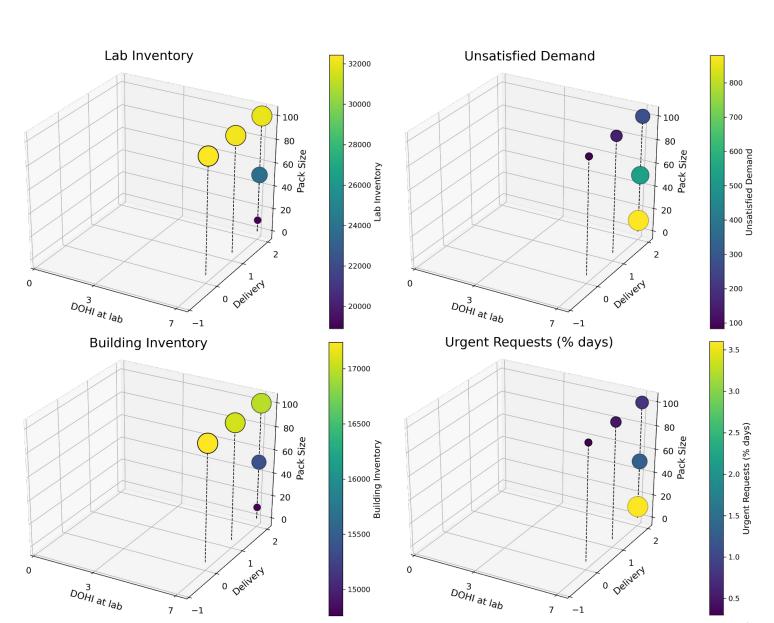
15000

1.0

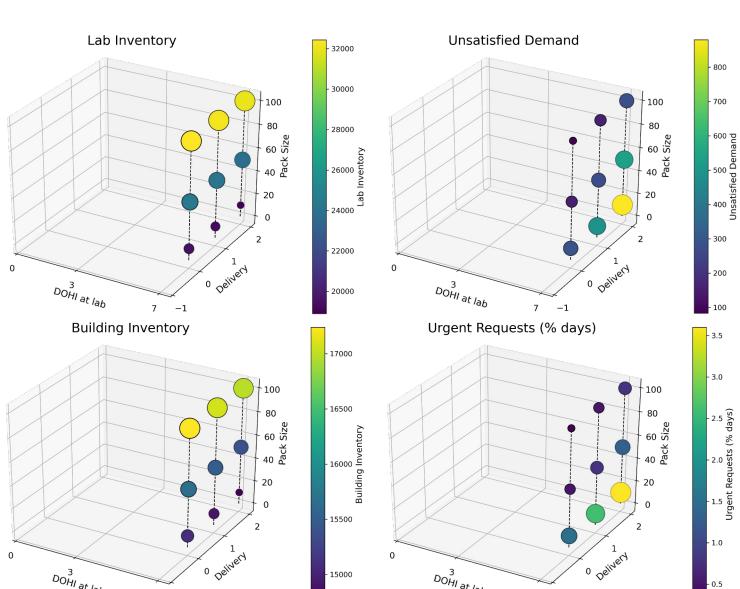
Varying Delivery Time Potential Impact

- •4.4% ↓ in building inventory
- •2.6% ↓ in lab inventory
- Lowest unsatisfied demand at 0-1 day lead time (83 units, 0.001% of total demand)
- Percentage of urgent requests decreased with shorter lead times, reaching 0.3% at a 0-1 day lead time.

Delivery Time	Building Inventory (Units)	Lab Inventory (Units)	Unsatisfied Demand	Unsatisfied Demand (%)	Urgent Requests (% days)
0	17,238	32,437	83	0.001%	0.3%
1	17,065	32,213	157	0.003%	0.5%
2	16,978	31,971	277	0.005%	0.8%



Varying Pack Sizes and Delivery Time **Potential Impact**

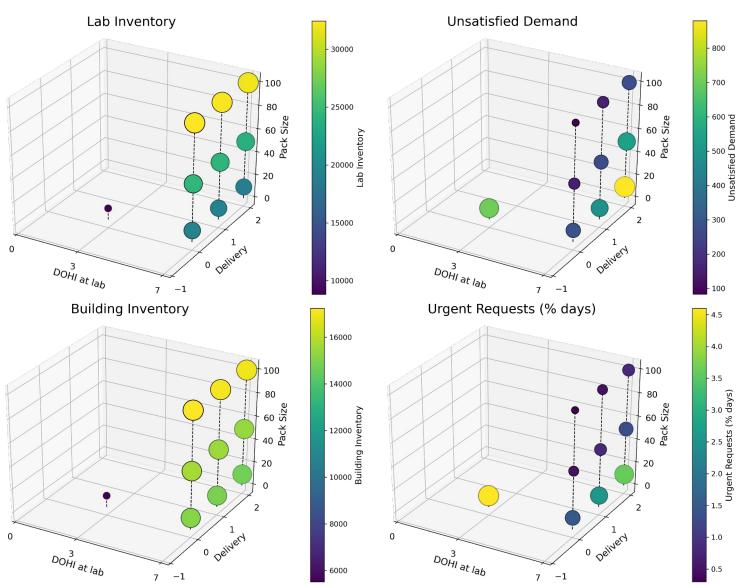


- Reduced pack size and delivery lead time resulted in the lowest building and lab inventory levels
- Indicates that smaller pack sizes and faster deliveries can contribute to better inventory management

Delivery Time	Pack Size	Building Inventory (Units)	Lab Inventory (Units)	Unsatisfied Demand	Unsatisfied Demand (%)	Urgent Requests (% days)
0	10	15,092	19,498	288	0.005%	1.5%
1	10	14,902	19,287	490	0.008%	2.6%
2	10	14,762	18,893	880	0.015%	3.6%
0	50	15,654	24,397	151	0.003%	0.5%
1	50	15,493	24,179	268	0.005%	0.8%
2	50	15,386	23,833	536	0.009%	1.3%
0	100	17,238	32,437	83	0.001%	0.3%
1	100	17,065	32,213	157	0.003%	0.5%
2	100	16,978	31,971	277	0.005%	0.8%

Physical Internet IPIC 2024

Varying Pack Sizes, Delivery Time and DOHI



Potential Impact

- Significantly decreased inventory requirements:
 - Building inventory ↓ ~91.1% to 1,507 units.
 - Lab inventory ↓ ~88.6% to 3,644 units.
- Despite the reductions, unsatisfied demand remained low at 48 units, accounting for only 0.008% of the total demand
- Urgent requests were recorded <5% days during the experiment → satisfactory level of service while substantially reducing inventory levels

Conclusion

Implemented a hyperconnected supply system for essential products at Georgia Tech, addressing challenges arising from human intervention

The system optimizes PPE supply and distribution using autonomous technologies and can be extended to multi-state networks

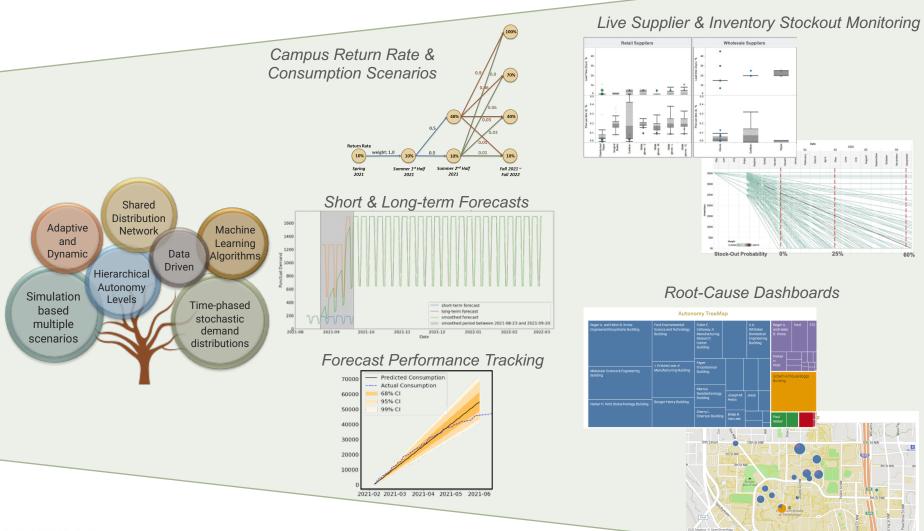
A potential to create a nationwide, distributed stockpile of essential supplies using real-time descriptive, predictive, and prescriptive analytics

Future research includes simulation studies to evaluate the transition to autonomous operations, resilience against disruptions, and modelling user behaviors in different industries

Thank you!

Reference: Shaikh, Pothen, and Montreuil (2023) Hyperconnected Critical-Product Supply and Distribution System: Towards Autonomous Operations. Proceedings of the 22nd International Federation of Automatic Control (IFAC) World Congress, 2023.

Overview of PPE Supply & Distribution System



Scenario based Forecasting System

Optimization based Distribution System

Simulation-Optimization based Replenishment Management

Control Tower for effective monitoring

PPE System in Numbers

Active Buildings

45

Active Labs

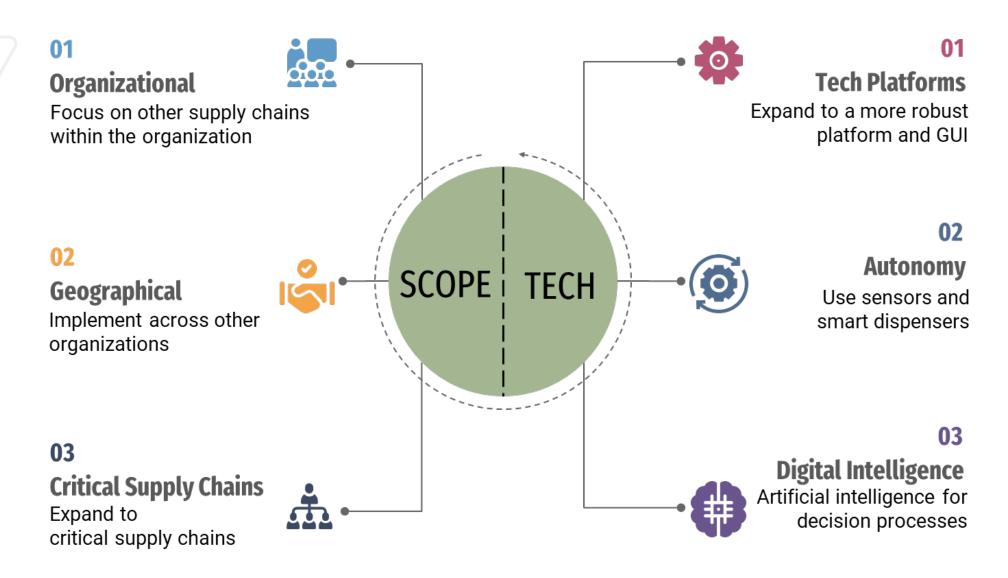
205

Masks Distributed

199,000

Gloves Distributed

451,000


Sanitizer Distributed

221 gallons

Future Research

