

The Hong Kong Polytechnic University

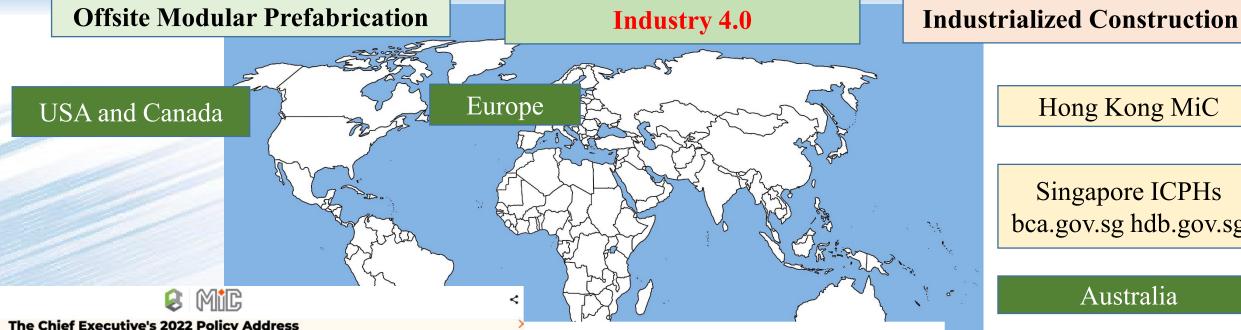
DT-PosFormer: A Digital Twin Enabled Transformer Network for Precise Pose Estimation and Trajectory Prediction of MiC Modules.

Yujie Han, Zhiheng Zhao, George Q. Huang 5/31 2024

Motivation

Preliminary

Research Gaps


Feasibility Analysis

Methodology

Experiments

Results

Hong Kong MiC

Singapore ICPHs bca.gov.sg hdb.gov.sg

Australia

The Chief Executive's 2022 Policy Address

To foster the development of MiC

Uplift the Productivity of the Construction Industry

Public Housing Supply (1)

Every year in past 5 and 10 years

SURVEY ON THE POTENTIAL UTILISATION OF PREFABRICATION YARDS IN HONG KONG -**SURVEY REPORT**

The special condition in Hong Kong

Modular Integrated Construction (MiC) is progressively replacing traditional construction.

Traditional construction site.

Complicated construction sites, Labor-intensive industries.

Goes against the Smart Site Safety System (4S) Construction Innovation and Technology Fund (CITF)

MiC construction site.

Improved construction quality, simplified management, reduced construction duration

Hong Kong

High density

High rise

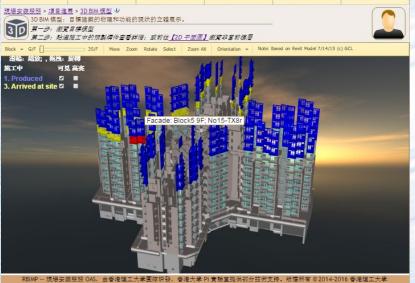
High labor costs

High safety requirement

Limited site

Motivation Preliminary Research Gaps Feasibility Analysis Methodology Experiments Results

Substantial Efforts: ITFs + RIF + SPPR + Consulting



Prefab Production

Cross-border Logistics

Construction Site

Research Gaps and Further Requirements

ents

"The faster the stacking process, the less the project duration and costs"

For the construction process

- Rely on the worker observation and the expertise of crane drivers
- Limited observation perspective and delayed stacking control

Safety accidents Installation errors Module collision

Comprehensive stacking perception

Further requirements

Dynamic and rapid response to emergent incidents

Predictive decision-making

For the stakeholders

- Slow manual stacking process
- Limited management and information sharing

Module accumulation Delays in project delivery

Affecting customer satisfaction and the company's reputation

Efficient information transmission and sharing among stakeholders

Predictive information and spatial and temporal traceability are the most important.

Motivation

Preliminary

Research Gaps

Feasibility Analysis

Methodology

Experiments

Results

Analysis of feasible methods for realizing spatio-temporal tracking

Real-time spatio-temporal information collection, analysis, and visualization for module pose estimation and trajectory prediction may be the only viable and revolutionary solution

Mainstream method can be divided into visual-based and nonvisual based method.

Computer Vison

Environment

Lighting conditions, cluttered background, and surface reflections of modules

Vibrations and shacking caused by construction activities

The camera perspectives are constrained by the deployment positions and angles Adaptability to variable environments

Image blurring and noise interference

• Cost

Full coverage camera on building sites is costly Camera is easily vandalized and costly to maintain. The cost of calculating full-scene data is huge.

Non-visual sensor-based method

Environment

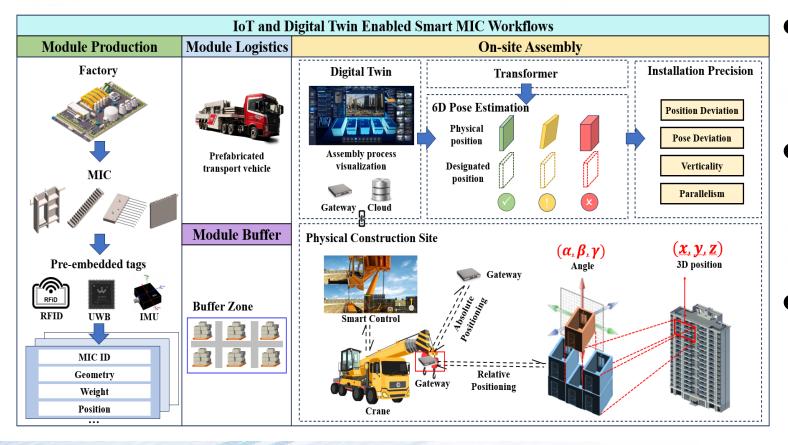
Ease of deployment

Long-term operational stability

Cost

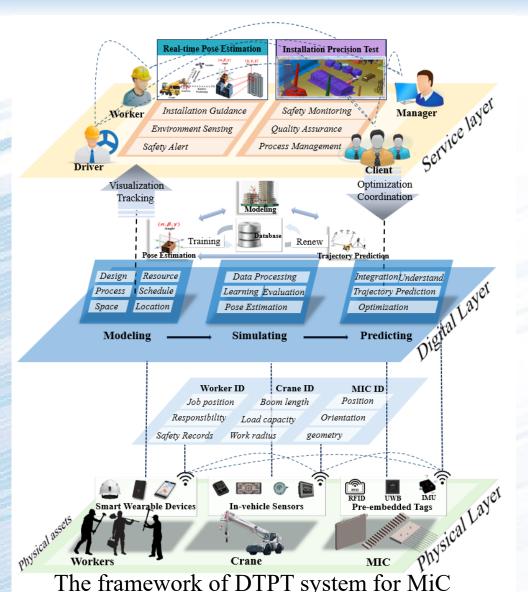
Lower cost

Real-time 3D position information –UWB (Ultra-Wide Band)


Real-time 3D Attitude information –IMU **Inertial Measurement Unit**

The workflows of smart MiC

A DT-PosFormer-enabled pose estimation and trajectory prediction system (DTPTS) for MiC on-site assembly.

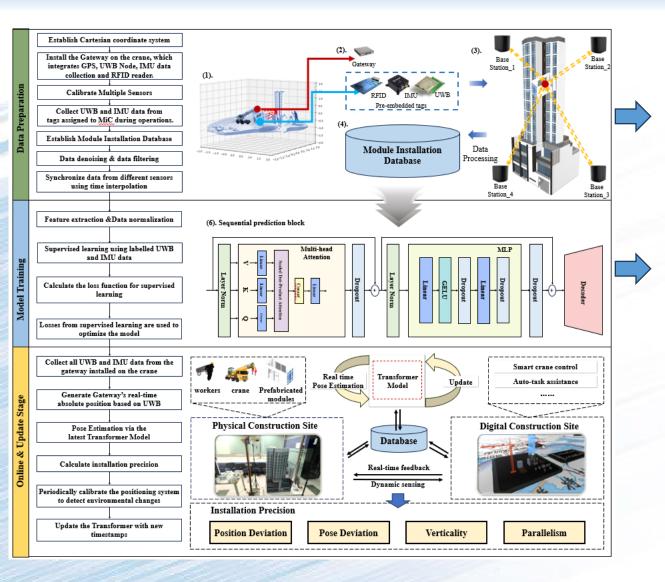

- A digital twin platform based on IoT is proposed for real-time perception and bidirectional interoperability
- A novel network based on Transformer is embedded into the digital twin for spatio-temporal module trajectory prediction
- Comparative studies with the current state-of-the-art DL models are conducted to validate the feasibility of the system and the effectiveness of the proposed method

The workflows of smart MiC

The framework of DTPT system for MiC

Service layer

The service layer creates a real-time visualization and information sharing platform for all stakeholders together. It primarily encompasses two types of services: 1) Guidance service. 2) Management service.


Virtual layer

The virtual layer mainly realizes the unified management of the data uploaded by the physical layer and establishes a high-fidelity digital twin of the stacking process.

Physical layer

The on-site assets are embedded in smart IoT devices for intelligent sensing. Multi-dimensional and multi-scale data of the internal characteristics and dynamic activities are captured by the IoT.

Pose estimation and trajectory prediction

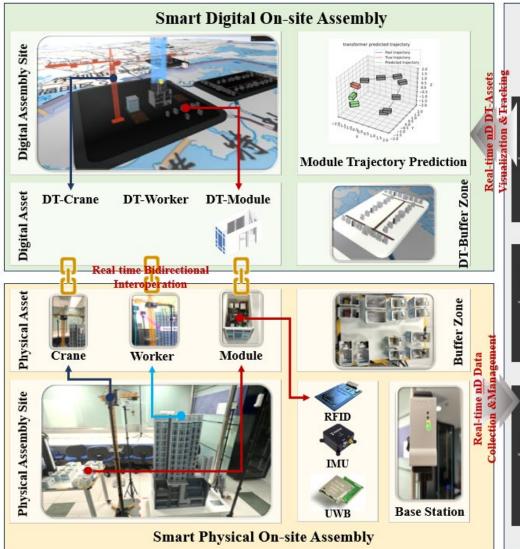
The past trajectory of module i:

$$X_i = (x_i^t, y_i^t, z_i^t, \varphi_i^t, \theta_i^t, \psi_i^t)$$

The true trajectory of module i:

$$Y_i = \left(x_i^{t+t_{\text{pred}}}, y_i^{t+t_{\text{pred}}}, z_i^{t+t_{\text{pred}}}, \varphi_i^{t+t_{\text{pred}}}, \theta_i^{t+t_{\text{pred}}}, \psi_i^{t+t_{\text{pred}}}\right)$$

The predicted trajectory of module i:


$$\hat{Y}_i = \left(\hat{x}_i^{t+t_{\text{pred}}}, \hat{y}_i^{t+t_{\text{pred}}}, \hat{z}_i^{t+t_{\text{pred}}}, \hat{\varphi}_i^{t+t_{\text{pred}}}, \hat{\theta}_i^{t+t_{\text{pred}}}, \hat{\psi}_i^{t+t_{\text{pred}}}\right)$$


The loss function:

SmoothL1 =
$$\frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0.5 * \left(p_{i_p}^t - p_{i_{GT}}^t \right)^2, & \text{if } \left| p_{i_p}^t - p_{i_{GT}}^t \right| < 1 \\ \left| p_{i_p}^t - p_{i_{GT}}^t \right| - 0.5, & \text{otherwise} \end{cases}$$

Experiments

Evaluation metrics

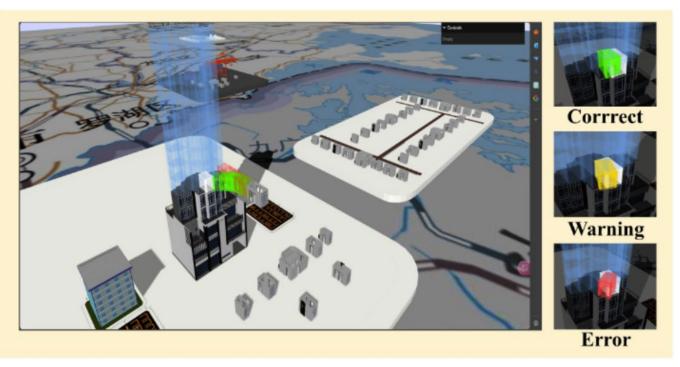
1) Final Displacement Error (FDE):

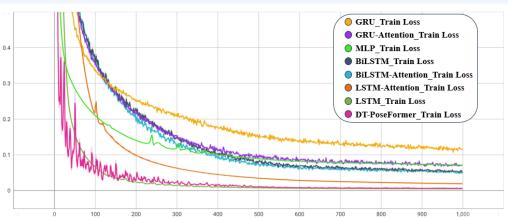
This is the distance between the last point of the predicted trajectory and the last point of the real trajectory.

$$FDE = \frac{1}{n} \sum_{i=1}^{n} \left| p_{i_p}^{tf} - p_{i_{GT}}^{tf} \right|$$

2) Average Displacement Error (ADE):

This is the average distance between all points of the predicted trajectory and the corresponding points of the real trajectory.


$$ADE = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{t_f} \sum_{t=1}^{t_f} \left| p_{i_p}^t - p_{i_{GT}}^t \right|$$

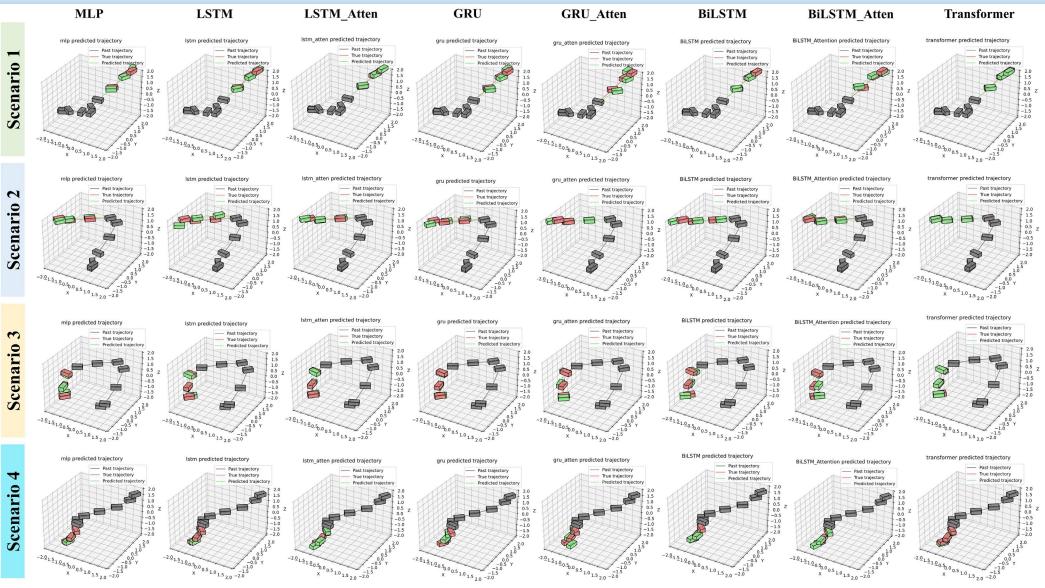

Motivation Preliminary Research Gaps Feasibility Analysis Methodology Experiments

Results

Results

The loss of different methods.

TABLE I. COMPARIONS ON EVALUATION METRICS AND LOSS

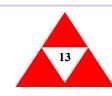

	ı		
Model	Smooth L1 loss	ADE	FDE
MLP	0.07129	57.32236	316.55729
GRU	0.1141	26.19518	137.12731
GRU-Attention	0.07162	26.17367	138.24061
LSTM	0.004935	26.30367	139.94350
BiLSTM	0.052	26.01963	139.14750
BiLSTM-Attention	0.05083	26.02726	139.12281
LSTM-Attention	0.01908	26.01323	138.46538
Ours(PoseFormer)	0.00661	23.58859	136.27763

The evaluation matrices of different methods.

The digital platform of MiC stacking process.

Results

The visualization of pose estimation and trajectory prediction in different scenarios.


The Hong Kong Polytechnic University

Yujie Han, Zhiheng Zhao, George Q. Huang 5/31 2024

