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The development of MiC and digital twin

Offsite Modular Prefabrication

USA and Canada

- oy
== o
" I =

e M

The Chief Executive's 2022 Policy Address

To foster the development of MiC

The Chief Executive delivered the
2022 Policy Address on 19 October.
To enhance Quantity, Speed,
Efficiency and Quality, the
Government will increase public
housing and land supply by different
measures, including the building of
Light Public Housing by MiC to
shorten the waiting time of public
housing. The Housing Authority and
Housing Society will adopt the MiIC
in more public housing projects. The
DEVB will establish a cross-
departmental steering committee,
to streamline approval processes,
and also making available land in the
Northern Metropolis for
manufacturing and storage of
modules.
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The special condition in Hong Kong

Hong Kong

High density

High rise

High labor costs

k—ligh safety requiremen4

Limited site

By e 7- i
Traditional construction site.
Complicated construction sites,

Labor-intensive industries.

Goes against the Smart Site Safety System (4S)
Construction Innovation and Technology Fund (CITF)

MiC constrctioﬁ‘s‘ite.
Improved construction quality,
simplified management,
reduced construction duration
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Research Gaps and Further Requirements

“The faster the stacking process, the less the project duration and costs”

For the construction process Further requirements

® Rely on the worker observation and the expertise of crane drivers
® Limited observation perspective and delayed stacking control Comprehensive stacking perception

' Motivation Preliminary

AA

Safety accidents Installation errors Module collision memmn) | Dynamic and rapid response to
emergent incidents

For the stakeholders Predictive decision-making

® Slow manual stacking process
® [imited management and information sharing
Efficient information transmission

Module accumulation Delays in project delivery and sharing among stakeholders

Affecting customer satisfaction and the company's reputation

Predictive information and spatial and temporal traceability are the most important.
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Analysis of feasible methods for realizing spatio-temporal tracking

Real-time spatio-temporal information collection, analysis, and visualization for module pose estimation and
trajectory prediction may be the only viable and revolutionary solution

Mainstream method can be divided into visual-based and nonvisual based method.

Computer Vison Non-visual sensor-based method

® Environment ® Environment
Lighting conditions, cluttered background, and surface reflections of modules = Ease of deployment

Vibrations and shacking caused by construction activities Long-term operational stability
The camera perspectives are constrained by the deployment positions and angles Adaptability to variable environments

Image blurring and noise interference

® Cost ® Cost

Full coverage camera on building sites is costly Lower cost

Camera i1s easily vandalized and costly to maintain.

The cost of calculating full-scene data is huge. Real-time 3D position information -UWB

(Ultra-Wide Band)

Real-time 3D Attitude information —-IMU
Inertial Measurement Unit
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The workflows of smart MiC

Feasibility Analysis B\Y (30T ) (7% Experiments

Results

A DT-PosFormer-enabled pose estimation and trajectory prediction system (DTPTS) for MiC on-site assembly.

IoT and Digital Twin Enabled Smart MIC Workflows
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The workflows of smart MiC

® A digital twin platform based on IoT 1s
proposed for real-time perception and
bidirectional interoperability

A novel network based on Transformer
1s embedded into the digital twin for
spatio-temporal module trajectory
prediction

Comparative studies with the current
state-of-the-art DL models are
conducted to validate the feasibility of
the system and the effectiveness of the
proposed method
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The framework of DTPT system for MiC
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The framework of DTPT system for MiC
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Pose estimation and trajectory prediction
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Results

Evaluation metrics

1) Final Displacement Error (FDE) :

This 1s the distance between the last point of the
predicted trajectory and the last point of the real
trajectory.

2) Average Displacement Error (ADE) :

This is the average distance between all points of
the predicted trajectory and the corresponding
points of the real trajectory.

ADE = = Z Z

L

Pi, — Pigy
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Results

© GRU_Train Loss

@ GRU-Attention Train Loss

@ MLP Train Loss

@ BiLSTM_Train Loss

@ BIiLSTM-Attention_Train Loss
@ LSTM-Attention Train Loss
@ LSTM Train Loss

@ DT-PoseFormer Train Loss

% The loss of different methods. |
TABLE 1. COMPARIONS ON EVALUATION METRICS AND LOSS

Corrrect Model Smooth L1 loss | ADE FDE
MLP 0.07129 57.32236 | 316.55729
GRU 0.1141 26.19518 | 137.12731
GRU-Attention 0.07162 26.17367 | 138.24061

Warning LSTM 0.004935 26.30367 | 139.94350
BiLSTM 0.052 26.01963 | 139.14750
BiLSTM-Attention 0.05083 26.02726 | 139.12281
LSTM-Attention 0.01908 26.01323 | 138.46538
Ours(PoseFormer) 0.00661 23.58859 136.27763

The digital platform of MiC stacking process. The evaluation matrices of different methods.
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Scenario 4

The visualization of pose estimation and trajectory prediction in different scenarios.
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