

Efficient Implementation of Truck Battery Charging and Swapping Stations in Hyperconnected Logistic Networks

Priyali Bandla, Yujia Xu, Guanlin Chen, Valerie Thomas, Benoit Montreuil Georgia Institute of Technology, Atlanta, USA

Corresponding author: pbandla3@gatech.edu

Keywords: Physical Internet, Hyperconnected Logistics Network, Battery Swapping, Battery Charging Conference Domain Fitness:

The study will seek to investigate and propose organization for enabling the adoption of Phyical Internet and Hyperconnected supply chains. From this study, we will address the limitations to implementation. Based on these findings, we propose a stakeholder structure and collaboration network to incorporate efficient methodologies to integrate electrified fleets into existing supply chains and hyperconnected logistic networks.

Physical Internet (PI) Roadmap Fitness: \boxtimes PI Nodes (Customer Interfaces, Logistic Hubs, Deployment Centers, Factories), \boxtimes Transportation Equipment, \boxtimes PI Networks

Targeted Delivery Mode-s: \boxtimes Paper, \square Poster, \square Flash Video, \square In-Person presentation

Research Contribution Abstract

With increasing consumer demand comes increasing transportation costs, costs measured by dollars, miles traveled, and CO₂ emitted. The EPA reported that in 2021 Medium and Heavy Duty trucks emitted about 407.8 million metric tons of just CO₂ [US EPA (2023)] in the United States. To combat such environmentally detrimental outputs, clean energy can replace gas or diesel fuel sources in freight systems. With equally demanding customer bases for rapid deliveries, transportation and commerce networks are being revolutionized. To keep up with innovation and implement clean energy sources, solutions must incorporate modular techniques to prevent additional costs to networks.

In the Physical Internet (PI) template for freight supply chains, electrification limits trucks to be serviced at hubs of optimal route-flow and of electrically feasible charging bays. This combination requirement under battery reenergizing significantly filters capable hubs in the network when constructing charging bays. Doing so at all the facilities in a network pose financial investment challenges. These additional locations may lack electric grid capabilities as well, leading to the route-optimal structure already existing under the Physical Internet infeasible. Since battery charging also requires the electric trucks to be charged at bays in the determined feasible set of hubs, the charging time will often be far greater than estimated dwell time for the facility [Bernard et al. (2022)]. Factors like driver motivation and incurred costs from lag-time minimize the profit achievable through electrification.

IPIC2024 Paper Abstract page 1/4

An alternative technology, battery swapping eliminates the need for trucks to be charged during hub stops, alleviating long wait times. Known to average around five minutes per swap [Zhu et al. (2023)], the function can be built into existing dwell times for vehicles in the optimized route. However, relying solely on battery swapping poses additional complexity in physical battery inventory management, algorithms on battery swapping optimization policy, and the direct costs of purchasing batteries. Eventually every battery in the system must be reenergized, requiring charging stations similar to battery charging with different specifications. Without fully charged batteries for every time cycle of transportation, the flow will halt.

The combination of two related technologies, battery charging (BC) and battery swapping (BS) can generate more implementable solutions under the Physical Internet framework. The electrification of hyperconnected logistic networks (HLN) will propose less barriers to entry and maximize the marginal utility of electrification. Hyperconnected logistic networks offer resiliency and sequential decision making [Crainic, Gendreau (2020)] by taking in modular container routing to provide optimized policies on which fuel method should be assigned to each arrival [Grover et al. (2023)].

In this paper we seek to highlight the necessary actions by major stakeholders to implement hyperconnected logistic networks integrated with battery charging and battery swapping and a framework for collaborative innovation to reach NetZero goals across industries. Drawing from literature, an outline of incremental steps with associated partners will be introduced for integration of electrification.

Further research on electric grid capabilities, distribution, and integration of electrified freight fleets is necessary to reach the NetZero goal [Revankar, Kalkhambkar (2021)]. Beyond the governmental interests in electrified fleets, large industries have incentives to adopt more clean energy technologies. Innovation policy must provide an incentive for standardized swapping technologies and charging stations to reduce costs to promote seamless integration into Hyperconnected Logistic Networks.

References

Altenburg, M., Anand, N. R., Balm, S. H., & Ploos van Amstel, W. (2017). Electric freight vehicles in city logistics: insights into decision making process of frontrunner companies. In European Battery, Hybrid and Fuel Cell Electric Vehicle Congress

Bernard, M., Tankou, A., Cui, H., & Ragon, P.-L. (2022, December 22). *Charging solutions for battery-electric trucks*. White Paper. https://theicct.org/publication/charging-infrastructure-trucks-zeva-dec22/

Emir Çabukoglu, Gil Georges, Lukas Küng, Giacomo Pareschi, Konstantinos Boulouchos, Battery electric propulsion: An option for heavy-duty vehicles? Results from a Swiss case-study, Transportation Research Part C: Emerging Technologies, Volume 88, 2018, Pages 107-123, ISSN 0968-090X, https://doi.org/10.1016/j.trc.2018.01.013.

Environmental Protection Agency. (2023, June). Fast Facts on Transportation Greenhouse Gas Emissions. EPA. https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

Feiqin Zhu, Liguo Li, Yalun Li, Kexin Li, Languang Lu, Xuebing Han, Jiuyu Du, Minggao Ouyang, Does the battery swapping energy supply mode have better economic potential for electric heavy-duty trucks?, eTransportation, Volume 15, 2023, 100215, ISSN 2590-1168, https://doi.org/10.1016/j.etran.2022.100215.

Grover, Nidhima & Shaikh, Sahrish & Faugere, Louis & Montreuil, Benoit. (2023). Surfing the Physical Internet with Hyperconnected Logistics Networks. https://doi.org/10.35090/gatech/8009.

Ramin Raeesi, Konstantinos G. Zografos, Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping, European Journal of Operational Research, Volume 301, Issue 1, 2022, Pages 82-109, ISSN 0377-2217, https://doi.org/10.1016/j.ejor.2021.09.037.

Ramin Raeesi, Konstantinos G. Zografos, The electric vehicle routing problem with time windows and synchronised mobile battery swapping, Transportation Research Part B: Methodological, Volume 140, 2020, Pages 101-129, ISSN 0191-2615, https://doi.org/10.1016/j.trb.2020.06.012.

Seyed Mostafa Mirhedayatian, Shiyu Yan, A framework to evaluate policy options for supporting electric vehicles in urban freight transport, Transportation Research Part D: Transport and Environment, Volume 58, 2018, Pages 22-38, ISSN 1361-9209, https://doi.org/10.1016/j.trd.2017.11.007.

S. Wang, C. Shao, C. Zhuge, M. Sun, P. Wang and X. Yang, "Deploying Battery Swap Stations for Electric Freight Vehicles Based on Trajectory Data Analysis," in IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3782-3800, Sept. 2022, https://doi.org/10.1109/TTE.2022.3160445.

Swapnil R. Revankar, Vaiju N. Kalkhambkar, Grid integration of battery swapping station: A review, Journal of Energy Storage, Volume 41, 2021, 102937, ISSN 2352-152X, https://doi.org/10.1016/j.est.2021.102937.

Teodor Gabriel Crainic, Benoit Montreuil, Physical Internet Enabled Hyperconnected City Logistics, Transportation Research Procedia, Volume 12, 2016, Pages 383-398, ISSN 2352-1465, https://doi.org/10.1016/j.trpro.2016.02.074.

Teodor Gabriel Crainic, Michel Gendreau, Lilia Jemai, Planning hyperconnected, urban logistics systems, Transportation Research Procedia, Volume 47, 2020, Pages 35-42, ISSN 2352-1465, https://doi.org/10.1016/j.trpro.2020.03.070.

US Energy Sponsors. Evaluating the role of battery swapping in Public Electric Transport Fleets. Energy5 Your Way. https://energy5.com/evaluating-the-role-of-battery-swapping-in-public-electric-transport-fleets

Wu X, Liu P, Lu X. Study on Operating Cost Economy of Battery-Swapping Heavy-Duty Truck in China. World Electric Vehicle Journal. 2021; 12(3):144. https://doi.org/10.3390/wevj12030144

Yanling Deng, Zhibin Chen, Pengyu Yan, Renxin Zhong, Battery swapping and management system design for electric trucks considering battery degradation, Transportation Research Part D: Transport and Environment, Volume 122, 2023, 103860, ISSN 1361-9209, https://doi.org/10.1016/j.trd.2023.103860.

Yanyan Yang, Shenle Pan, Eric Ballot, Freight Transportation Resilience Enabled by Physical Internet, IFAC-PapersOnLine, Volume 50, Issue 1, 2017, Pages 2278-2283, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2017.08.197.