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Abstract: This paper addresses the optimization of dealer replenishment decisions in 
planning their assortment for high-value substitutable products so as to maximize product 
availability of dealers in hyperconnected retail networks. To achieve this, we formalize the 
problem as a discrete optimization model, and provide exploratory empirical results based on 
a Monte Carlo simulation for a case study of a leading manufacturer of recreational vehicles. 
Then, we show that the proposed model achieved sales increase by 30% in a given network 
while keeping the same inventory level as the current business model. Emphasizing 
availability rather than inventory, we present the contribution of this paper in assortment 
planning, inventory transshipment, customers’ substitution behavior, and product availability. 
We conclude the paper with a call for further research under Physical Internet-enabled 
settings such as aiming universal hyperconnectivity in transportation, distribution, production 
and supply. 
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1 Introduction 
Incomplete product availability deems inevitable in retail networks for reasons such as 
uncertain demand, forecast errors, budget, and space-related limitations. It results in the 
customers purchasing a substitute product when a satisfactory alternative is available in stock 
(Fitzsimons, 2000; Gruen et al., 2002; Campo et al., 2004) or lost sales if none of the 
available products meets the customer’s expectations (Derhami and Montreuil, 2019). In 
either case, customer satisfaction suffers through in the latter case, it suffers more drastically, 
and both the product manufacturer (brand) and the retailer incur direct and indirect costs 
associated with lost sales. This along with the customer-centric marketing strategies that 
attempt to provide the customers with their desired products within a satisfactory time in any 
location, force retail networks to employ smart innovative approaches to prevent or at least 
reduce incomplete product availability. 
Retail centers offering high-value substitutable products such as cars, recreational vehicles, 
high-end electronics, luxury clothing and jewelry usually employ inventory transshipments or 
on-demand priority orders from distribution centers, depots or manufacturing facilities to 
satisfy the demand for out-of-stock products. This is mostly because on one side the sales 
profit justifies the cost and hassles of a transshipment and on the other side customers in such 
markets may be willing to wait up to a reasonable time to receive their desired product 
(Montreuil et al., 2019). Today, such retail networks are rapidly moving towards 
hyperconnected distribution networks where the flow of information and goods between 
multi-party retail centers, distribution centers and manufacturer allow efficient utilization of 



 
[Jinyong Yim, Shahab Derhami, and Benoit Montreuil] 

2 
 

inventory across the network (see Figure 1). In such environment, in-stock availability does 
not fully reflect product availability in a retail center because other resources such as 
manufacturer, depot, and inventory of other retailers can be exploited on-demand to satisfy 
customer demand. This makes the assortment planning decision more challenging because, in 
addition to stock, dealerships ought to account for the available products through the network 
to maximize their sales. 

 
Figure 1: Illustration of a Hyperconnected Retail Network of High-Value Product Manufacturer 

Montreuil et al. (2019) proposed a new approach to estimate product availability for an 
interconnected network of dealerships. They defined a new Key Performance Indicator (KPI) 
termed Product Availability Ratio (PAR) that measures the readiness of a dealership to satisfy 
upcoming customers by taking into account product demand share estimates, product 
substitution probability, and network availability of products. 
In this paper, we develop a mixed integer program using the PAR model proposed by 
Montreuil et al. (2019) to find the optimal replenishment orders in the context of dealerships 
placing frequent replenishment orders under stochastic demand and customer substitution. 
Our model determines the set of products that a group of interconnected dealerships should 
replenish to maximize their product availability and consequently, customer satisfaction. It 
simultaneously solves the assortment plan for all dealerships in the network and therefore 
considers the interactions and effects of dealer orders on one another. The proposed model 
differs from the conventional assortment planning problem in that it concurrently accounts for 
product substitution, the inventory transshipment policies employed frequently by dealerships 
to satisfy the demand for an out-of-stock product, and the willingness of customers to wait to 
receive their desired product. The simulation results for a case of recreational vehicles show 
that the proposed model can achieve 30% sales increase while maintaining the same inventory 
level. 

The remainder of the paper is structured as follows. Section 2 reviews pertinent papers, 
describes the gap in the existing literature and explains the contribution of this paper. In 
section 3, we briefly present the PAR estimation model developed by Montreuil et al. (2019) 
and describe the mathematical formulation of our optimization model. Section 4 presents the 
simulation results of a case study, and section 5 provides concluding remarks and avenues for 
further research. 

2 Literature review 
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In a customer-centric retailing environment taking into account product availability for high-
value high-variety products, determining what to store where is a key decision. Extensive 
research on assortment and inventory decisions in retailing have been conducted to solve this 
problem. Pentico (1974) demonstrated a one-dimensional assortment planning problem 
regarding the sequence of customer arrivals under stochastic demand. Then, Pentico (1988) 
extended his research to a two-dimensional assortment planning problem that allows product 
substitution while it is not the case in the one-dimensional assortment planning problem, 
using an Economic Order Quantity (EOQ) model under deterministic demand. Ryzin and 
Mahajan (1999) analyzed a category-based assortment problem using a multinomial logit 
model (MNL) to describe the consumer choice process. Chong et al. (2001) presented an 
empirically-based modeling framework using a nested MNL model to address the complexity 
of managing a category assortment. Gaur and Honhon (2006) proved that products should be 
equally spaced using a locational choice model to address customer demand under a single-
period assortment planning. This paper as contrasted with the above papers, investigates a 
product availability maximization focused multi-dimensional network based assortment 
planning problem taking in account estimated demand share of each product and customer 
substitution probability. 
One key component for the assortment planning problem in our study is customer’s 
substitution behavior. Numerous studies focused on stock-out-based substitution behavior 
whereby customer decision depends on the products available in stock at the time of her visit 
to the store. Kok and Fisher (2007) implemented a case study of a supermarket chain to 
observe the substitution behavior and demand for products in each store. Honhon et al. (2010) 
developed a dynamic programming algorithm for the optimal assortment and inventory levels 
in a single-period problem with stock-out-based substitution. However, relatively little is 
studied on dynamic substitution taking into account all the available products in the network 
as potential resources so as to best meet stochastic demand. 
Inventory transshipment is exploited as an alternative and complements to dynamic 
substitution in this research, as a retailer may exploit alternative sources for the demanded 
product and for substitutes depending on the lead time acceptable by the customer. Inventory 
transshipment has long been identified as a key leverage in the literature. Zhao et al. (2008) 
analyzed the optimal production and transshipment policy for a two-location make-to-stock 
queueing system. Fang and Cho (2014) showed how inventory decisions change when 
transshipment of excess inventory is allowed by studying a cooperative game among multiple 
companies. Wee and Dada (2005) developed a formal model for transshipping inventory in a 
retail network using the stock either from a warehouse or from another retailer that has excess 
stock. In this paper, we extend by assuming that all retailers may take advantage of inventory 
transshipment, and that they cooperate to maximize network-wise product availability for all 
customers visiting any dealership in the network, while insuring satisfying retailer-specific 
availability. 

In recent years, more studies have been conducted on product availability to better satisfy 
uncertain demand. By smartly deploying products in the network inventory, sales increase 
while keeping the same inventory level is made possible. Chiang (2008) showed how 
customers’ stock-out based substitution can make an impact on product availability when both 
a supplier and its retailer behave to optimize their own profit. Ervolina et al. (2009) proposed 
a mathematical optimization model to manage product availability in an assemble-to-order 
supply chain with multiple customer segments by a case study. In our research on product 
availability optimization, we benefit by comparing the simulation results by the proposed-
model-based orders and the actual dealer orders for a case of recreational vehicles. 
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Physical Internet plays a key role in facilitating fast and efficient order replenishment and 
inventory transshipment in the context of this research. Recent studies have demonstrated 
how the new concept of Physical Internet enables to shift toward much more distributed 
hyperconnected transshipment. Montreuil B. (2011) emphasized live open performance 
monitoring of all Physical Internet actors and entities as one of the key characteristics to 
define the Physical Internet vision, which focuses on key performance indices of critical 
facets such as speed, service level, reliability, safety, and security. Exploiting real-time 
inventory identification between retail centers and fast replenishment, we evaluate the new 
KPI termed PAR in hyperconnected retail networks in this study. Hakimi et al (2012) and 
Sarrai et al (2014) showed by simulation that the Physical Internet-based transportation 
reduces 20-32% of the total traveled distance in a case of an open logistics web in France. In 
this study, considering the customer’s acceptable waiting time that facilitates nearer 
transshipments through hyperconnected transportation, we attempt to find the best fitting 
combination of inventory deployment for all retail centers in the network. 

This paper contributes to the multi-dimensional assortment planning literature for high-value 
products in that inventory transshipment between dealerships and customers’ willingness to 
wait for their desired product are considered throughout the hyperconnected network. On top 
of that, this research proposes a novel approach that optimizes product availability under the 
Physical Internet-enabled hyperconnected retail networks, and investigates the correlation 
between the product availability of dealerships and the corresponding successful sales. 

3 Methodology 
In this section, we first present the components of the PAR model developed by Montreuil et 
al. (2019) for product availability estimation in an interconnected network of retailers. Then, 
we describe our proposed optimization model to solve the assortment planning problem with 
the objective of maximizing product availability while considering the possibility of inventory 
transshipment. 

3.1 Product availability ratio (PAR) 
We consider product availability ratio as a key measurement to assess the readiness of retail 
centers to satisfy the upcoming customers. Considering a hyperconnected network of 
dealerships, it uses stochastic demand shares, and accounts for possible inventory 
transshipment as well as customers’ willingness to accept a substitute product and to wait 
some time so as to receive a satisfactory product. 
The fundamental components utilized to compute the PAR are (a) inventory at each dealer, 
(b) substitution matrix from substitution product to demanded product, (c) product transfer 
time from a dealer to another, (d) daily product demand share at each dealer, and (e) the 
proportion of customers willing to wait for the desired product. Components (a), (b), and (c) 
are inputs to the model while components (d) and (e) are derived from experimental results, as 
described in Derhami and Montreuil (2019) and Montreuil et al. (2019). The PAR 
computation starts with truncating the original substitution matrix of products by given 
thresholds based on the assumption that none of the customers would purchase any substitute 
product whose substitution level for the desired product is below a certain threshold 
(Montreuil et al., 2019). The threshold for each product is also input to the model.  It varies 
according to the main characteristics of the product and its retailing price. In general, it may 
be assumed that customers who want a more luxurious and costly item might be pickier, so 
their expectations relative to the fitness of a substitute product for it to be satisfactory would 
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be higher than if they would be wanting less costly items (Montreuil et al., 2019). The 
substitution matrix truncating process is expressed below: 
 
𝐹𝐹𝑝𝑝𝑝𝑝′ = 𝑓𝑓𝑝𝑝𝑝𝑝′  𝑖𝑖𝑖𝑖 𝑓𝑓𝑝𝑝𝑝𝑝′ > 𝑡𝑡𝑝𝑝, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0  ∀𝑝𝑝,𝑝𝑝′  (1) 
where 𝐹𝐹𝑝𝑝𝑝𝑝′  is the considerable substitution of product 𝑝𝑝′ for demanded product 𝑝𝑝, 𝑓𝑓𝑝𝑝𝑝𝑝′  is the 
original substitution fitness of product 𝑝𝑝′ for demanded product 𝑝𝑝, and 𝑡𝑡𝑝𝑝 (0 ≤ 𝑡𝑡𝑝𝑝 ≤ 1) is the 
threshold for considering substitution for a client-demanded product 𝑝𝑝. When product 𝑝𝑝′ is 
not available now at the dealer d visited by the customer, then its transfer time form its current 
dealer 𝑑𝑑′ to dealer d must be taken into consideration. So we transform the considerable 
substitution matrix into a time-based substitution matrix as follows: 
 
𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′𝜏𝜏 = 𝐹𝐹𝑝𝑝𝑝𝑝′  𝑖𝑖𝑖𝑖 𝑝𝑝𝑑𝑑𝑑𝑑′ ≤ 𝜏𝜏, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0 ∀𝑝𝑝,𝑑𝑑,𝑝𝑝′, 𝑑𝑑′, 𝜏𝜏  (2) 
 
where 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′𝜏𝜏  is the time-based substitution fitness of product 𝑝𝑝′ from dealer 𝑑𝑑′ in time 𝜏𝜏 as 
a substitute for demanded product 𝑝𝑝 to dealer 𝑑𝑑, and 𝑝𝑝𝑑𝑑𝑑𝑑′ is the transfer time (in days) of a 
unit of product from dealer 𝑑𝑑′ to dealer 𝑑𝑑. Now considering the existing inventory at each 
dealer, we get the best considerable availability for all possible demands from each product p, 
each dealer d, and each customer waiting time 𝜏𝜏 as follows: 
 
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 = max𝑝𝑝′𝑑𝑑′(𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′𝜏𝜏 ∗ 𝑖𝑖𝑝𝑝′𝑑𝑑′)  ∀𝑝𝑝,𝑑𝑑, 𝜏𝜏 (3) 
 
where 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 is the time-based best considerable product availability for product 𝑝𝑝 at dealer 𝑑𝑑 
in time 𝜏𝜏, and 𝑖𝑖𝑝𝑝𝑝𝑝 (𝑖𝑖𝑝𝑝𝑝𝑝 ∈ {0,1}) is the existing inventory state of product 𝑝𝑝 at dealer 𝑑𝑑. The 
𝑃𝑃𝑃𝑃𝑃𝑃 is then computed by taking into consideration the estimated demand shares per product 
per dealer, and the customers’ willingness to wait for their desired product, as formally 
expressed below: 
 
𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ 𝑣𝑣𝜏𝜏𝜏𝜏 ∑ 𝑑𝑑𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    (4) 
 
where 𝑣𝑣𝜏𝜏 is the share of the customers’ willingness to wait for their desired product until time 
𝜏𝜏 and 𝑑𝑑𝑝𝑝𝑝𝑝 (0 ≤ 𝑑𝑑𝑝𝑝𝑝𝑝 ≤ 1) is the expected demand share of product 𝑝𝑝 at dealer 𝑑𝑑 in the region, 
and ∑ 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1. 

3.2 Product availability optimization model  
We here address the problem of maximizing the product availability ratio of all dealerships by 
deciding which product to order in the context that each dealer takes into account the product 
substitutions and exchanges within the network. Hence, all dealers can take advantage of the 
network inventory so as to maximize the availability of a customer-targeted product at her 
selected dealer, as a surrogate to minimizing unsatisfied customers and lost sales. We hereby 
formalize this problem through introducing a PAR optimization model. 

3.2.1 Input parameters 
𝑎𝑎𝑝𝑝𝑝𝑝′ : Product substitution availability of product 𝑝𝑝′ for product 𝑝𝑝 (1 if product 𝑝𝑝′ is 

substitutable for product 𝑝𝑝, 0 otherwise), 𝑎𝑎𝑝𝑝𝑝𝑝′ ∈ {0,1}  ∀𝑝𝑝, 𝑝𝑝′ 
𝑑𝑑𝑝𝑝𝑝𝑝 : Expected demand share [0,1] of product 𝑝𝑝 at dealer 𝑑𝑑 in the region, ∑ 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1 
𝑖𝑖𝑝𝑝𝑝𝑝 : Current inventory of product 𝑝𝑝 at dealer 𝑑𝑑, 𝑖𝑖𝑝𝑝𝑝𝑝 ∈ {0,1}  ∀𝑝𝑝, 𝑑𝑑 
𝑚𝑚𝑑𝑑 : Maximum dealer portfolio size for dealer 𝑑𝑑 
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𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′𝜏𝜏 : Substitution fitness of product 𝑝𝑝 to dealer 𝑑𝑑 offered by product 𝑝𝑝′ from dealer 𝑑𝑑′ in 
time 𝜏𝜏 

𝑣𝑣𝜏𝜏 : Expected share [0,1] of customer’s willingness to wait for her desired product until 
time 𝜏𝜏, ∑ 𝑣𝑣𝜏𝜏𝜏𝜏 = 1 

3.2.2 Variables 
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 : Availability of product 𝑝𝑝 at dealer 𝑑𝑑 in time 𝜏𝜏 
𝐹𝐹𝑝𝑝𝑑𝑑𝑑𝑑′𝑑𝑑′ : 1 if product 𝑝𝑝′ from dealer 𝑑𝑑′ is the offered substitution for product 𝑝𝑝 to dealer 𝑑𝑑, 0 

otherwise 
𝐼𝐼𝑝𝑝𝑝𝑝 : 1 if product 𝑝𝑝 is in the inventory of dealer 𝑑𝑑, 0 otherwise 
𝑂𝑂𝑝𝑝𝑝𝑝 : 1 if product 𝑝𝑝 is ordered by dealer 𝑑𝑑, 0 otherwise 

3.2.3 Objective function 
The objective is to maximize the total weighted product availibilty of dealers given the 
expected share of customers willing to wait up to a specific time for a satisfactory product, 
and the expected demand share of product 𝑝𝑝 at dealer 𝑑𝑑 in the region. It can be expressed as: 
 
Maximize: 𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ 𝑣𝑣𝜏𝜏𝜏𝜏 ∑ 𝑑𝑑𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          (5) 
 

3.2.4 Constraints 
 
𝐼𝐼𝑝𝑝𝑝𝑝 = 𝑂𝑂𝑝𝑝𝑝𝑝 + 𝑖𝑖𝑝𝑝𝑝𝑝 ∀𝑝𝑝, 𝑑𝑑  (6) 
 
∑ 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝑚𝑚𝑑𝑑 ∀𝑑𝑑  (7) 
 
𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′ ≤ 1 − 𝑎𝑎𝑝𝑝𝑝𝑝′𝐼𝐼𝑝𝑝′𝑑𝑑   ∀𝑝𝑝, 𝑑𝑑′ ≠ 𝑑𝑑,𝑝𝑝′ (8) 
 
𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′ ≤ 𝐼𝐼𝑝𝑝′𝑑𝑑′   ∀𝑝𝑝, 𝑑𝑑, 𝑝𝑝′,𝑑𝑑′ (9) 
 
∑ 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′𝑝𝑝′𝑑𝑑′ ≤ 1 ∀𝑝𝑝, 𝑑𝑑 (10) 
 
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′𝜏𝜏𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝′𝑑𝑑′𝑝𝑝′𝑑𝑑′   ∀𝑝𝑝, 𝑑𝑑, 𝜏𝜏 (11) 
 
𝐹𝐹𝑝𝑝𝑑𝑑𝑑𝑑′𝑑𝑑′ ∈ {0,1}  ∀𝑝𝑝, 𝑑𝑑, 𝑝𝑝′,𝑑𝑑′ (12) 
 
𝐼𝐼𝑝𝑝𝑝𝑝 ∈ {0,1}  ∀𝑝𝑝, 𝑑𝑑 (13) 
 
𝑂𝑂𝑝𝑝𝑝𝑝 ∈ {0,1}    ∀𝑝𝑝, 𝑑𝑑 (14) 
 
By constraint set (6), the total sellable inventory becomes eqaul to the sum of the order and 
the current inventory. Constraints (7) restrict the portfolio size for each dealer. By constraints 
set (8), the offered substitution product 𝑝𝑝′ from dealer 𝑑𝑑′ can be chosen for demanded product 
𝑝𝑝 at dealer 𝑑𝑑 only if there is no substitutable product 𝑝𝑝′ at dealer 𝑑𝑑; these constraints are made 
for this optimization model to represent the actual dealer behaviors such that dealer does not 
consider inventory transshipment from other dealers if it has a substitutable product in its 
stock for demanded product. By constraints (9), product 𝑝𝑝′ at dealer 𝑑𝑑′ can be a substitute for 
demanded product 𝑝𝑝 to dealer 𝑑𝑑 only if product 𝑝𝑝′ is in the inventory at dealer 𝑑𝑑′. Constraints 
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(10) ensure that only one product from all products at all dealers can substitute for demanded 
product 𝑝𝑝 at dealer 𝑑𝑑. By constraint set (11), product availablity of product 𝑝𝑝 at dealer 𝑑𝑑 in 
time 𝜏𝜏 is computed such that the binary variable 𝐹𝐹𝑝𝑝𝑑𝑑𝑑𝑑′𝑑𝑑′ selects the best time-based 
substitution to enable the maximum product availability. Constraints (12), (13), and (14) 
ensure that those variables are binary. 

4 Case study 
The case company, specialized in recreational vehicles including off-road vehicles and 
snowmobiles, currently operates with more than five hundred dealers in North America and is 
one of the top manufacturers in this industry. Dealers are businesses distinct from the 
manufacturer. Many dealership businesses operate a single dealer site, while some operate a 
few dealer sites. When facing a demand by a customer for a product not in its inventory, a 
dealer has the capability of investigating whether alternative sources within a satisfactory 
distance have the demanded product or a substitute one in stock, and to engage in 
transshipping a product from another source (e.g. dealer). The baseline for this experiment has 
each dealer deciding independently upon its inventory replenishment decisions without 
formally considering the substitution and transshipment options, and ignoring product 
availability ratio performance. 
In order to test the performance of the proposed optimization model in this case study, a 
simulation-based experiment has been designed in a way that dealers are allowed to make an 
order on a daily basis and that with fast-replenishment the ordered products are delivered by 
early next morning before the dealers begin to operate. Seventeen dealerships in one state and 
102 products of a certain category of vehicles are selected for this experiment. The simulation 
period is set to six business days in a given week in year 2018, and overall regional demand is 
set to be stemming around four customers daily, each demanding a specific product. The 
dealer visited by a customer is randomly identified, based on estimated dealer demand share 
within the region. The product demanded by the customer at the dealer is also randomly 
identified based on the given expected demand share per product per dealer. Each day the 
dealerships order products to replace those sold. A scenario is generated to correspond to a 6-
day week of specific customer demand. In this paper, we provide exploratory results based on 
a twenty-scenario experiment. 

We use Monte Carlo simulation as shown in Figure 2 to investigate the performance of our 
proposed methodology with the baseline approach. The 20 scenarios by simulation are 
generated using MATLAB software while the PAR optimization model is run using a 
developed Java software, exploiting the CPLEX optimization software package. In each 
scenario of the simulation, each customer visits one retail center, expresses her demanded 
product, and states how long she is willing to wait for receiving a satisfactory product. If the 
retailer can provide a satisfactory product (i.e., the product whose substitution level for the 
demanded product is above the threshold) either by its own inventory or by inventory 
transshipment from other retailers within the time that the customer is willing to wait, then a 
successful sale occurs. Otherwise, the retailer loses the sale. After the available substitution 
product searching process, as marked with the blue dotted line in Figure 2, is finished, the 
retailer makes an order at the end of the day by different order policies that are explained in 
the next paragraph. Then, all this process is repeated for the assigned simulation period, and 
the resulting scenario is generated. 
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We design different three order policies for dealerships to evaluate the performance between 
the current business model of the case company and the proposed model. The three 
alternatives for the experiment are: 

1. Actual dealer order of the case company during the simulation period 
2. Single dealer focused PAR optimizing order 
3. Hyperconnected network-based PAR optimizing order 
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Figure 2: Diagram of Simulation Model Generating Hyperconnected-Dealer-Network-based 
Scenarios 

Note that alternative 1 corresponds to the company’s current typical operation so the actual 
dealer orders during the simulation period are identified: dealers make orders independently 
and locally, not considering customers’ substitution behavior nor the potential of inventory 
transshipment. Alternative 2 is designed to evaluate the single dealer focused product 
availability whereas alternative 3 is the proposed operation scheme discussed in section 3. In 
alternative 2, dealers consider customers’ substitution behavior but do not take into account 
the potential of product transshipment, while dealers consider all the three factors in 
alternative 3. We generate the initial inventory for alternatives 2 and 3 based on single dealer 
focused PAR optimization and hyperconnected PAR optimization, respectively but keep the 
inventory level the same as alternative 1. 

Demand shares of products are forecast daily using exponential smoothing, adjusted so the 
total of estimated shares always equals one. We used the historical sales log data of the case 
company in the given region and the expected lost sales ratio in order to estimate the realized 
demand shares (Derhami and Montreuil, 2019), which become data input to product demand 
share forecast. 

4.1 Quantitative analysis 
To evaluate how much improvement our developed method can make on dealers’ 
performance and provide better insight, we numerically and graphically analyze the 
experimental results. 

 
Figure 3: Daily Average Successful Sales and Lost Sales along with PAR 

Figure 3 shows the resulting daily average successful sales and lost sales, along with the daily 
average PAR result from the 20 scenarios generated by each alternative. Maintaining the same 
dealer inventory size at retail centers as alternative 1, alternative 2 and 3 result in significantly 
higher PAR than alternative 1. This can be interpreted as dealers having significantly higher 
chance to meet uncertain customer demand in alternative 2 and 3 than in alternative 1. Since 
dealers in alternative 2 always attempt to maximize their own PAR without taking into 
consideration the potential of the network-driven product transshipment, even though it is 
allowed, the average daily PAR improvement is restricted. Exploiting hyperconnected-
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network-based PAR optimization, alternative 3 increases PAR by 29% in contrast to baseline 
alternative. 

The sales results derived from customer demands indicate that dealers can make more sales 
under the PAR optimization policy. Exploiting alternative 2 and 3, the average daily sales 
increase by 22% and 30% as contrasted with baseline alternative 1. Interestingly, the 
successful sales made by the dealer’s inventory rather than the inventory of other dealers is 
higher in alternative 2 than those in alternative 3. This is due to the fact that in alternative 2, 
dealers always attempt to be ready for the next visiting customers as best as possible with 
their own inventory by maximizing their standalone product availability. In contrast, 
alternative 3 enables the best total average daily sales as it better deploys products in the 
network and consequently, results in more inventory-transshipment-based sales. The average 
daily lost sales ratio of each alternative resulting from the 20 scenarios is 38%, 24%, and 
19%, respectively for alternatives 1 to 3. 

 
Figure 4: Daily Average Number of Transshipment and Corresponding Travle Distance 

Figure 4 presents the daily average number of transshipment occurrence and the resulting 
daily average travel distance. As expected from the result shown in Figure 3, the most travel 
for product transshipment occurs in alternative 3 so as to best meet the customers’ demand by 
employing the network inventory. Also, a higher number of transshipments occur in 
alternative 2 than in alternative 1 as in the region there is inventory of more PAR-contributing 
products in alternative 2 and thus this contributes to meeting uncertain demand to some 
degree. However, the total traveled distance differs only slightly between alternative 1 and 2. 
This is because in alternative 2, a few big dealers with higher inventory are ordering some 
highly substitutable products, which become available for transshipping to other relatively 
small dealers, whereas the product transshipments in alternative 1 occur more randomly and 
thus, result in a greater traveled distance per unit of product transshipment. 
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Figure 5: Daily Average Network Inventory Share 

Figure 5 shows the share of the average network inventory per product for each alternative, 
compared with the current demand share per product in the region. There are some 
significantly higher inventory shares than the current demand shares for certain products in 
alternatives 2 and 3, while inventory shares over 6% for any product do not exist in 
alternative 1. This is due to the fact that keeping more of highly substitutable products 
contributes to enabling high PAR, thus it ends up in alternatives 2 and 3 with ordering more 
of those products than their demand shares. This does not happen in alternative 1 that does not 
consider production substitution when ordering replenishments. Because of product 
substitution, alternatives 2 and 3 show similar high inventory share patterns for certain highly 
substitutable products such as products 32, 33, 61, and 63. However, they significantly differ 
in other highly substitutable products, including products 46, 48, and 49. This is because in 
alternative 3, dealers consider the potential of inventory transshipment when they place an 
order, and consequently do not order too many of them if the products are stored at other 
nearby dealers, whereas the potential of inventory transshipment is never considered in 
alternative 2.  

5 Conclusion 
In this paper, we address the optimization of dealer replenishment decisions in planning their 
assortment so as to maximize the Product Availability Ratio (PAR) defined by Montreuil et al 
(2019). We formalize the problem as discrete optimization model capable of tackling PAR 
optimization for a hyperconnected network of dealers offering a wide-variety portfolio of 
substitutable high-value products. We provide exploratory empirical results based on a Monte 
Carlo simulation for a case study of a leading manufacturer of recreational vehicles.  
By switching the emphasis from inventory to availability, the paper originally contributes to 
the literature associated with assortment planning, inventory transshipment, customers’ 
substitution behavior, and product availability. Importantly, the paper takes into account 
inventory transshipment among dealerships and customers’ willingness to wait to receive 
their desired product. 

The paper provides insights on how such an advanced hyperconnected system can benefit all 
retailers in the network by increasing readiness to respond to customer demand, and inducing 
sales growth and customer satisfaction growth. The simulation results notably show that our 
developed model can achieve 30% sales increase while keeping the same inventory level by 
smartly determining the set of products for a group of interconnected dealerships. This is 
mainly because the proposed model induces the network inventory shares match to the 
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network-based product demand shares, while adjusting to take into consideration the fact that 
certain products are satisfactory substitute to several others. 

In regard to further research, more meaningful results can be obtained in future work by 
further investigating the exploitation of non-dealer external resources in the model such as 
depots, warehouses and production facilities so as to concurrently maximize the 
hyperconnected network-based PAR performance and overall sustainability. In addition, there 
should be deeper investigation of the gains in PAR, sales, profitability and sustainability 
performance enabled by Physical Internet hyperconnectivity. Notably, the reduction of 
required inventory to achieve high PAR given faster and cheaper hyperconnected 
transportation and distribution, with digitally transmitted real-time information and smart 
deployment optimization. There is also potential to be explored relative to production and 
supply, by feeding dealers directly from factories and suppliers instead of only relying on 
inventoried products. 
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