New ICT infrastructure and reference architecture to support Operations in

future PI Logistics NETworks

D2.21 ICONET PI PoC Integration Platform - Final

Version

Document Summary Information

Grant Agreement No

769119 Acronym ICONET

Full Title New ICT infrastructure and reference architecture to support Operations in future Pl
Logistics NETworks

Start Date 01/09/2018 Duration 30 months

Project URL https://www.iconetproject.eu/

Deliverable D2.21 ICONET PI PoC Integration Platform — Final Version

Work Package WP2

Contractual due date | M26 (AMD) Actual submission date | M26

Nature Other Dissemination Level Public

Lead Beneficiary IBM

Responsible Author

Kieran Flynn (IBM)

Contributions from

John Farren (IBM), CLMS, NGS

n This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 769119.

D2.21- ICONET PI Control and Management Platform - Final Version

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the ICONET consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the ICONET Consortium nor any of its members, their officers, employees or agents shall be responsible
or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the ICONET Consortium nor any of its members,
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage
caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© ICONET Consortium, 2018-2021. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others has been
made through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

© ICONET, 2020 Page | 2

D2.21- ICONET PI Control and Management Platform - Final Version

Table of Contents

1 EXECULIVE SUMMIQITYvvveeiirrnerinrrsiiiinisesisrssusesssssisrssmsiesssssismsssssssssssissssssssssssssssssssssssssssssssnssssses 7
B2 1111 oo [7 Lot o Lo 8
2.1 Deliverable OVEIVIEWccciiiiiiiiiiiiiiniiiiiininiiiiniiiieiismssiiseiiiiessmssssseetiitesssmssssetisesssssssssssssssssssns 8
2.2 Goals of the PoC Integration Environment Task & Deliverable..........ccccccvuuiiiiinniiniennnciiiiinnnineennnennn. 8
2.3 Summary of Version 2 (D2.20) and Overview of this Deliverable..............ccuveeereeeieeeinenineeineeiieenneennen 8
24 Leveraging Platform-as-a-SerViCecciiiiiruuuiiiiiiiiiiiimnuiiiiiiiiiiemmmmeiiiiessmmsssiiiesssmsseessseessns 9

3 Integration Strategies & APPIrOACRES...........eeuueiivriveeeeniiiiiinennesiiiisiinsmsssssssssssssssssssssssssssssssssssnns 11
3.1 SEIVICE DISCOVEIY cuuvruiiiiiiiiiirnnnniiieeiiinemssmsssiisnsiimeessnssssissessteesssssssssssssssesssssssssssssssessssssssssssssssssssssss 11
3.2 R =] YT or <N 1Y =T o 12
3.3 External Integration & ACCESS SCENATIOS ...ccuuuuiiieiiiiiirmmmiiiiieiiiieimsmiiimeiiieesssmssissesiteesssssssssssssseess 13
3.3.1 SIMUIGTION ACCESS (A) eeeiiiiieeeiiiee ettt e eee e e et e e e ettt e e e e te e e e etaeeeesabaeeeeasbaeeeassaaaeassasaaassesesasseaaeanssaseeassaeaessreaaans 14
3.3.2 Pl SEIVICE ACCESS (B).ereeeeetiiieeiiieeeeitiee e e ettt e eeete e e e st eeeeeebeeeeeaaeeeeesbaeeeeasbaeeeasseaaaasbesaeassasesasseaeeanssesesansaeaessreaaans 15
TR . T 011V <] (o oY= Yol <) PR 16
3.3.4 Data ACUISTTION (D) ureeeeeiiiieiiiiee e ettt e eeie e e et te e e ettt e e eeteeeeetaeeeesabaeeeessbaeeeassaaaeasbesaeassasessseaaeansseseeansaeaesasseaaans 16
3.3.5 Node-to-Node Communication & Integration with Legacy SYStEMSccceeviieriiiiiiieniee e 18

4 Deployment Strategies, Methodologies and Procedures................cuueeueeeeeencereensereeeeeeseessensennns 19
4.1 o T« =T 1 T3PS 19
4.2 Recommended Pipelined Testing Strategiescccccvrruuiiiiiiiiiiiiiniiiiiiniiiienm. 21
ot R U1 11 A =T TP PO PP UPPPPUPPPPRPPIOE 21
o\ o B =T £SO P PUPTO U UPPPPUPPPPUPPIRE 21
e B [01 (< T={ = L o] o I =T £ YOO PP PO U PP PPUPPPPRPPIOt 21
A T (o a1 T [Lol I 1YY 4TRSS 21

4.3 R <o 1 8T ¥ [21
4.4 [1= 0] Lo Y 4 =T 41PN 23

5 Machine Learning DeploymMENtS...............ceerreeeenuiisinnnenuusissssimmsmssses 26
5.1 Requirements for new Machine Learning Deployment........cccccvviuuiiiicniiniennnniiinnnn. 26
5.2 AV ol o 1Y =T Vi Tol=E 2N 0T o] o X- 1] o RPN 27
5.3 Model TrainiNg @s @ SEIVICEcuiuuuiiiiiiiiiiiiiiniiiieeiiiitriniiieeiiiieessmmsiseettteesssmsssssessssessssssssssssssssens 27
5.4 Machine Learning @s @ SEIVICE.....uciiiiiiiiiiiimmmiiiieetiiiermmmiiiieiiiitessmmsssiseesittessssssssssssssessssssssssssssssens 28

6 Future Trends in Pl Service Deployment MOdEIs................cevrvveeueriiiiinnennnnscsssninsnsnsssssssssnssssssnns 30
6.1 Challenges for Multi-Cloud Pl SErViCeS......ccccieiiiiiiimmniiiiiiiiiiienmmiiiiiniiiieemmeesseessssss 30
6.2 A Centralised Multi-Cloud Management SYStemccciiiiiieeeniiiiiiniiiieeniemeess 32
6.2.1 Public & Private CloUd APIS @Nd CLIS ...cccuiieeiiieiieecieesteesteestee et et eeiee e staeesbaeesaaeesateasaseessbeesnsessbaessesessseansens 32

T A U=t | T 1Y a Y o] =R 32

T T 2 (=T | F- 1 A @ Lo YU T | o] o 4 PR 33

6.2.4 MUlti/HYDrid CloUG NETWOIKS....ccviiieiie ettt rte ettt s e e st e et e e ba e beesbeenbeeaseeabesasesssessaesseesanessns 34
6.2.5 Combining SDN, Ansible, CloudForms for a Multi-cloud Pl SCENAriO........cccevviieriieeriieeiee e 35

7 PoC Integration Environment Blueprint — FUll CONteXL............ccccvveveeriiirirvvennisisrnnennnssssssnsennannes 37

© ICONET, 2020 Page |3

D2.21- ICONET PI Control and Management Platform - Final Version

E-JN 0o T Tt [77 (o 1 41
Annex | — Accessing the PoC Environment for EValuQtionccceueeeeeeiiirivevenssiisnnnesnnsssssssssnannes 42
Annex Il —=PoC Integration Environment SCre@nSRNOLSccceeuureirirveveerisisininnessssisssrssssssssssssessannes 43

List of Figures

(U I R T I Y Y < - - N 9
Figure 2 - AWS CloUd Map NamMESPACES ..eeeeeiiieeeciiiiiiieeeeeeeeeeeeeetttaeeeeeeeaessssssanttssaseeaaaaseeesaaansssresssesaaeesssssnsnsssnns 11
Figure 3 - LL2 ROUTING SEIVICE DINS ENTIY c.eueeiiiiieeeee ettt s s s e e e e e e e eaeaaaaeeeeaeeeseneaesesenenennns 12
Figure 4 - Service Mesh FIEXIDIE ROULING........coi ettt e e e e e e e e e e rr e e e e e e e e e e e s e nnnnnnees 13
Figure 5 - EXEernal INTegratioNs ittt e e e e e e e ettt e e e e e e e e e eeesasssreseeeeaaeesesesannnsrnnns 14
Figure 6 - VPC links t0 Service LOad BalanCersuuiiiiiiieeiieccciiiiiieeeee e e e e e ececcittreee e s e e e e e eessnnnsraseseseaeeessesnnnssnnns 16
Figure 7 - LiViNg Lab INPUL SEr@AMSuvviiiiiieei ettt e e e e e e e e sttt e e e e e e e e e s eessnsssreaeeeeeaeesesennnnnssnnns 17
Figure 8 - Data Stream IMONITOMINGuuuueeiiciieieie e e e e e e e s s e s e eeeeeseaeaaaaaeeesenesensneresnnenrnnes 17
Figure 9 - LiVINg Lab Data DEIIVEIYuuiiiiiiee ittt e ettt e e e e e e e e e e e et bte e e e eaeaeeeessnsnstasaseeaaeessssannnssnnns 18
FIGUPE 10 - Cl/CD PIPRIINE. ...cuveeeeetee et ettt eetee ettt e e et e e et e e e te e e s ebeeeeateeeebeeeeateeesnsesesseeeantesesseeesnteeesnseeennes 19
FIZUre 11 - ROULING PIPEIINE oottt et re e e e e e e e e e e e et bbb e s eeeaeaeeeessanssstsseeeeaaaessssannsnsrrnns 20
Figure 12 - Vulnerability NOtifiCationoecei oo e e e e e e e e e re e e e e e e e e e e e s e annnnnees 22
Figure 13 - VUINErability REPOITeeiiiiiiieee ettt e e e e e e e et e e e e e e e e e eeesnsssreaaeeeaaeaseseannnnsrnnns 22
T U O e OV [o} {o] o o - 1 o o I PSRURRNE 23
FIZUre 15 - DEPlOYMENT GrOUP......eiiiiiiiiieee e e e e e ettt et e e e e e e e seetbraeeeeeeaaeeessssaanttssaseeeaaaeeeesaansssssssseeaaesssssannsnssnnns 24
Figure 16 - AWS Beanstalk Configuration ...ttt e e e e e e e e e e e aerrr e e e e e e e e e e e seennnnnnnns 25
Figure 17 - Sagemaker training jOD iN PrOBIrESS.uuuiiiiiiiiee ittt et e e e e e e esee b e e e e eeeaeeeeesessssreseeeseaaesssensnsnssnnns 27
T U gl s Y V7= 1Y, T o =] T PERUURRNE 28
Figure 19 - Machine Learning ENndpoint - PaaS POWEIEduuuiiiiiiiiieee i ccccciirereeee e e eeeccinrrer e e e e e e e e e e e e snnnnnees 28
Figure 20 - MUlti CloUd Pl EXGMPIE ...uuiiiiiiiieei ittt e e e e e ettt e e e e e e e e e e s e arasraseeeeeaeeeessnnssssessaeeaaaesssaansnssnens 31
Figure 21 - Redhat ClOUAFOIMSeiiiiiiieeeee et e e e e e e e e e et re e e e e e e e e e eeesnsssresaeeeeaeesesenannnssnnns 33
Figure 22 - Multi-cloud Pl NetWOrk SCENAIIOuuiiiiiiiiiiee ettt e e e e e e e e e e re e e e e e e e e e s e seennnnsnnns 35
o TdU T gl e Tl oo T O 2 [V T=Y o] o [} U UPEUUURRNE 37
List of Tables

Table 1: PoC Integration PIatform GOalSooo ittt e e e e e e e e e e rea e e e e e e e e e e s e nnnnrnnns 38

© ICONET, 2020 Page [4

D2.21- ICONET PI Control and Management Platform - Final Version

Glossary of terms and abbreviations used

Abbreviation [Term

Description

AP| Application Program Interface
AS Autonomous System
AWS Amazon Web Services
DBaa$S Database as a Service
Dev-ops Development and Operations
DNS Domain Name System
DoA Description of Action
DoW Description of Work
EC2 Elastic Compute 2 {Amazon Service}
ELK Elasticsearch Logstash Kibana
ESB Enterprise Service Bus
GA Grant Agreement
GUI Graphical User Interface
laaS Infrastructure as a Service
loT Internet of Things
LAN Local Area Network
LL Living Lab
NFV Network Function Virtualisation
NOLI New Open Logistics Interconnection
oLl Open Logistics Interconnection
Osl Open Systems Interconnection
P&G Proctor & Gamble
Paa$ Platform as a Service
Pl Physical Internet
PoA Port of Antwerp
PoC Proof of Concept
QoS Quality of Service
R&D Research & Development
RAM Random Access Memory

© ICONET, 2020

Page |5

D2.21- ICONET PI Control and Management Platform - Final Version

RON Resilient Overlay Node
SB StockBooking
SCN Scenario
SDN Software Defined Networking
SLA Service Level Agreement
SoTA State of the Art
T&L Transport & Logistics
TCP/IP Transmission Control Protocol/Internet Protocol
vCPU Virtual Central Processing Unit
VLAN Virtual Local Area Network
VXLAN Virtual Extensible Local Area Network
WP Work Package

© ICONET, 2020

Page| 6

D2.21- ICONET PI Control and Management Platform - Final Version

1 Executive Summary

IBM addressed the majority of the goals for the PoC Integration during work documented in Deliverable D2.20.
This involved the creation and configuration of the virtual networks, infrastructure, deployment of Pl Services
and both service-to-service integration and service-to-simulation integration. In this document IBM has
furthered the achievements of D2.20 by addressing the remaining goals and then enhancing the flexibility,
security and robustness of the Pl Service networks, communication, node-to-node communication and Pl Service
deployments by ensuring they are cost effective and valid in real world scenarios. The defined approach allows
Pl Service developers to focus on PI related functionality for logistics operations and offloads non-functional
requirements (security, config etc.) to the PaaS services and dev-ops personnel. The use of Paa$ systems allowed
IBM to extend the scope of work beyond the DoA requirements and ensure the PoC Integration Environment
and the PI Services residing within adopted real world dev-ops based production strategies and technologies to
ensure Pl Service deployments would be instant, automated, secure, robust etc.

IBM identified machine learning based PI Services as having a unique set of challenges and requirements and
also likely to play an increasingly large role in the Pl Service suite. Strategies and technologies were adapted to
address the needs of ML Services while ensuring they were compatible with the existing frameworks supporting
standard Pl Services. Strategies around data acquisition and quality, ensuring machine learning based services
are recent and up to date, that new models are validated before deployed and paradigms that see analytics
outside the cloud, at the edge of Pl networks.

IBM identified key emerging trends in cloud technology and deployments that are likely to both mirror trends in
Pl Service deployments but also impact them too. IBM researched leading technologies striving to address these
trends and applied them to the existing PoC environment created in Version 2, while expanding beyond that to
a likely future Pl scenario that relies on multiple cloud vendors in combination with local, legacy and private cloud
and software technologies used by logistics organisations. These new concepts of multi-cloud and hybrid-cloud
will expand the reach of the cloud beyond the datacentre and out to edge and low power devices in the fog. As
loT becomes more prevalent in the transport and logistics sector, the ability for the Pl to leverage these new
technologies while adapting to future trends is critical and the research in this document lays out
recommendations to take advantage of new cloud and fog computing trends. This allows for PI Services to be
deployed and managed in a distributed yet orchestrated manner across heterogenous device types. All of which
looks to the future and aids in increasing the adoption potential, and subsequently increasing the future
disruptive potential, of Pl Services.

This deliverable ends with a visualised blueprint containing all major components, services, systems and ICONET
technical assets that were created, configured, deployed and developed as part of all three PoC Integration
Platform deliverables. This ties together the work across all three documents and presents the work in a unified
manner.

The work done and documented in this deliverable and the previous deliverable versions show that the PoC
Integration Environment successfully met the requirements as laid out by the DoA, successfully met the
requirements of the ICONET WP2 and Living Lab participants, and in fact went beyond the initial DoA to adapt to
future requirements such as security, integration and modern deployments. It shows that a design methodology
was adopted to ensure that the cloud and edge computing paradigm requirements of the future were forefront
in design considerations.

© ICONET, 2020 Page |7

D2.21- ICONET PI Control and Management Platform - Final Version

2 Introduction

This deliverable describes the methodology, design decisions and work done under Task 2.7 PoC Integration
Platform (previously known as Control and Management Platform). The PoC Integration Platform task and
associated work has two main goals. The first is to drive the integration of these assets across a number of
scenarios. The second is to support and facilitate the development and deployment of Pl Services and other
technical assets required to further research in the Pl domain. The substantive work towards these goals were
achieved and described in D.20, the intermediate version of this deliverable. The research and effort for this
deliverable focused on how the approaches already taken were refined and improved upon and how they can
be applied and adapted for the Pl vision with regards to current and emerging technical trends.

2.1 Deliverable Overview

e Executive Summary — An overview of this document’s contents

e Introduction - Introducing the context of this document to the previous version and the DoA
requirements

e Integration Strategies & Approaches — Discussing the different connectivity scenarios and approaches
as they were applied to the PoC integration platform and Pl Nodes

o Deployment — Discussing the technologies and approaches used for a modern, production level strategy
deployment framework

e Machine Learning Deployments — Discussing the unique challenges and requirements of machine
learning based Pl Services and the approaches used to address them and combine them with existing Pl
Services management frameworks.

e Future Trends in Pl Service Deployment Models — Discussing how emerging trends in cloud deployments
will apply to the Pl in the near future, and how the PoC Integration created for ICONET is adapted for
modern hybrid/multi cloud environments of the future, discussing specific technologies and approaches.

e Conclusion — Overview of work and lessons learned

2.2 Goals of the PoC Integration Environment Task & Deliverable

As discussed in Version 1 and Version 2 of this deliverable, the goals of the PoC Integration Platform are to
provide a flexible, cloud enabled digital workbench which will facilitate the technical research actions in the
project. The platform provides a secure enclave where Pl Services can be deployed, developed, tested and
integrated. As the development moves to the final stages, the focus shifts more to integration actions and
ensuring that the living lab scenarios are digitally represented within the PoC environment. This spans from
ensuring access to the relevant datasets to multiple deployments of single services as each has been configured
for a particular scenario.

With these core goals met, IBM elected to expand the scope of the requirements and has investigated the
potential usage paradigms from a cloud and deployment perspective that will likely exist by the time the PI
becomes a global reality. Deployment paradigms based on hybrid cloud, multi cloud, edge and fog computing
were considered within the Pl context to provide a roadmap to potential real-world implementations.

2.3 Summary of Version 2 (D2.20) and Overview of this Deliverable
The intermediate (2") version of this deliverable (D2.20) discussed in detail the following topics

e The Integration Environment Architecture
e Dataflow and interconnectivity scenarios for the Pl Services
e The goals and objectives of the PoC Environment

© ICONET, 2020 Page| 8

D2.21- ICONET PI Control and Management Platform - Final Version

e The Infrastructure and Network Topology of the PoC Environment along with the deployment and
configuration of compute and storage systems

e The strategies, tools and systems used to support the simulation systems

e Pl Services Deployment & Integrations

The work undertaken for deliverable D2.20 addressed much of the goals and requirements of the associated
tasks. The approach taken for this deliverable was to enhance the existing infrastructure and frameworks in
terms of features — both functional and non-functional and to expand the scope of the research in a means which
would further the PI. This was done by integrating dev-ops strategies and approaches to Pl Service deployment,
providing specific technological approaches for machine learning based Pl Services and by addressing secure
connectivity from a cloud engineering perspective and allowing Pl Service developers to focus on core Pl Service
functionality. In addition, future trends in cloud service deployments were researched and emerging trends were
applied to known Pl scenarios. Emerging technologies addressing these trends were evaluated in respect of the
existing PoC environment and recommendations for future Pl networks were made.

2.4 Leveraging Platform-as-a-Service

Platform-as-a-Service (PaaS) is specifically addressed in the ICONET DoW as the preferred approach for engaging
cloud services in the ICONET project. As shown in Figure 1, there are three major paradigms — Saa$S (Software-
as-a-Service), PaaS (Platform-as-a-Service) and laaS (Infrastructure-as-a-Service). SaaS is a user facing model,
example of which are gmail, slack, google docs etc. PaaS is used primarily by software developers or dev-ops to
enhance or support the application they wish to present to users. laaS is primarily used by administrators and is
the underlying compute and similar resources that support the platform and applications above, which is
ultimately powered by the actual bare metal hardware of servers, switches, hard disks etc.

Gmail, Slack SaaS' End Users

Openshift, Fargate, GCE PaaS Software
Developers
VMware, Openstack / laaS Administrators

Figure 1- Paas, SaaS & laaS

There are many different systems that can fall under the PaaS umbrella. These could be computed or similar
systems to support applications running in the cloud such as GCE (Google Cloud Engine), Kubernetes, Red
Hat Openshift or AWS Fargate but can also encompass non-functional frameworks such as security systems,
firewalls, load balancers, SDN (Software Defined Networking). Anything that a software developer or dev-
ops engineer can engage as a pre-existing service without having to develop, install or construct themselves
can be considered a PaaS service.

The benefits of PaaS to ICONET, and why it was specified in the DoW as the approach to take, is that less
time and effort needs to be spent on developing and building non-functional systems. The bulk of the effort

© ICONET, 2020 Page |9

D2.21- ICONET PI Control and Management Platform - Final Version

can be instead focussed on the core task at hand — namely the research and development of the Pl Services
and systems and the integration of those systems in a manner to address the Living Labs requirements. In
this project Amazon Web Services (AWS) was chosen as the cloud vendor (in a selection process that also
included Google Cloud Engine and IBM Cloud as candidates). AWS was chosen as it had a particularly rich
catalogue of PaaS options, some specifically identified as useful for ICONET such as Lambda and the API
gateway. ICONET also engaged the use of Virtual Private Clouds, Software Defined Network Infrastructure,
Elastic IP Addresses, Elastic Load balancers, Elastic Container Registries, Elastic Container Services, ldentity
and Access Management, Deployment Pipelines and more services beyond. All of these services have
commercial or open source alternatives, but a significant amount of time and effort was saved by choosing
PaaS alternatives, and at a very low financial cost. This allowed ICONET to hit the ground running so to speak
in terms of focusing efforts immediately and directly at the core high value development and research
objectives of the project.

IBM has taken initial steps to ensure the viability of the PI Services in alternative cloud models. This is
discussed in more detail in the Future Trends in Pl Service Deployment Models section.

© ICONET, 2020 Page | 10

D2.21- ICONET PI Control and Management Platform - Final Version

3 Integration Strategies & Approaches

In version 2 of this deliverable the pilot integration of the optimisation service and the simulation service were
discussed. The core mechanic of the integration is the ability for the Anylogic simulation service to make REST
API calls to the optimisation service.

3.1 Service Discovery

At this stage of ICONET, all services and associated APIs are now complete and published to the ECR (Elastic
Container Registry) where multiple versions and iterations of each service are stored as docker image templates.
Each image has been deployed and a number of services have been deployed multiple times to allow the
integration and testing across various living lab scenarios. In addition, services are no longer deployed as isolated
entities, as WP2 explores and configures the interdependencies of certain services on other services. For
example, the routing service will make requests to the networking service and the shipping service makes
requests to almost all other services. As individual services are redeployed (after an update or a bugfix) their
local IP address may change. The results of this new stage of development and integration is a larger and ever-
changing number of services, bound to changing IP addresses with different purposes, integrations and
configurations. It is impractical to manage the publication and communication of these variations manually and
in a real word environment this process needs to be managed programmatically. Therefore, for the PoC
environment, Service Discovery is enabled for all services. Service Discovery is facilitated by DNS (Domain Name
Servers) and configured by an internal AWS service called Cloud Map.

AWS Cloud Map Namespaces

Q 1 @
Domain name v Description v Instance discovery v
local - API calls and DNS queries in VPCs
LL1 PoA Services API calls and DNS queries in VPCs
LL3 Sonae Services API calls and DNS queries in VPCs
LL2 P&G Services API calls and DNS queries in VPCs
LL4 Stockbooking Services API calls and DNS queries in VPCs

Figure 2 - AWS Cloud Map Namespaces

As shown in Figure 2, Cloud Map allows for the creation of namespaces and service names. A namespace is simply
a designated collection of entries under a common category. In WP2 there are five namespaces, one for each
living lab and an additional namespace for more broad integration and testing deployments. Within each
namespace any number of service names are defined and then associated with a given service. For example, the
namespace for Living Lab 2 has a service within it for routing simply called “routing”. This service is associated
with the actual deployed routing service which is specifically deployed for Living Lab 2 which is labelled as “II2-
routing”. When the developers of another application wish to interact with this specific service, they need only
point the service at the “routing.ll2” endpoint and the DNS servers managed by AWS will point requests at the
IP address of the “lI2-routing” service.

© ICONET, 2020 Page | 11

D2.21- ICONET PI Control and Management Platform - Final Version

AWS Cloud Map Namespaces LL2 routing-ll2

Service: routing-ll2 .

Service information

Name Service ID
routing-1l2 srv-2qowxu7745bwrbp4
Namespace name Description

LL2 -

Namespace ID

ns-ug4vvsb7ik5r65zi

DNS configuration

R d t TTL
DNS routing policy ecord type
Multivalue answer routing A 60

Custom health check configuration
Health check type
Custom health check configured

Failure threshold
1

Figure 3 - LL2 Routing Service DNS Entry

This process only works however if the developers already know the endpoint and know what that specific
function the service at that endpoint has or does. In order to provide a programmatical way to acquire this
information it is possible to associate any number of “tags” to a given endpoint. The tags can describe relevant
information about the service and can include, but are not limited to:

e Port number the service is listening on
e Version number of the service

e Living Lab the service is operating for
e Dataset the service is using.

The tags are managed by Cloud Map and a developer can access these tags as well as request full listings of all
namespaces and all services within specific namespaces by making API requests against the Cloud Map service
itself. While Cloud Map is a proprietary service offered by AWS all major cloud vendors will have similar systems
for managing Service Discovery or indeed 3™ party implementation can be used. Having developers tailor each
service to be able to interact with each particular implementation is not practical so it is desirable for a common
interface to be designed. In the case of the ICONET PoC, a simple API service can be developed that relays the
information from Cloud Map to the service. This still needs to be updated to match the given deployment
scenario, but it is a single point of configuration change, as opposed to multiple points of change that would be
needed without the API relay.

3.2 Service Mesh

The next evolution of Service Discovery is the Service Mesh. This is a concept that allows developers and
administrators to see and understand the relationship between all services and view them as a single entity in
terms of logs, metrics, connectivity, troubleshooting etc. Of particular relevance to the ICONET project is the
ability to divide requests to a single service into multiple lanes and send those lanes to specific service instances.

© ICONET, 2020 Page | 12

D2.21- ICONET PI Control and Management Platform - Final Version

Warehouse Management Software

Logistics
Data

Model
Training

Service Mesh \

Proxy

90% | 10%

Al Analytics Al Analytics
Service New Version

PI Services Deployment /

Figure 4 - Service Mesh Flexible Routing

In Figure 4 we see an example. In this scenario a warehouse management software system is using a machine
learning powered analytics service to help optimize operations within the warehouse. Data regarding the
warehouse operations is stored by the management software and is used to train new machine learning models
based on recent activity ensuring the analytics and predictions are up to date and as accurate as possible. New
models are deployed on a regular schedule. The logistics application then makes requests directly to the analytics
service. However, when a new model is ready to be deployed it is not good practice to push it to a live deployment
without first undergoing a verification phase. The use of a service mesh allows a single endpoint proxy that the
logistics application will interface with. The application is not aware of nor need it be aware of any changes that
occur behind the proxy. The proxy is configured to route a percentage of traffic to the new model where it can
be verified while the majority of traffic is routed to the current model. Once confirmation is received the new
model is performing in line with the old model, the new model can be configured to accept 100% of the traffic
with no interruption to service.

In the ICONET PoC AWS provides a mesh service known as App Mesh as it allows full integration with existing
AWS services. All major cloud vendors offer comparable services and in case of an on-prem or self-managed
cloud deployments and these approaches can be easily replicated across any vendor or using open source private
cloud approaches.

3.3 External Integration & Access Scenarios
The ICONET PoC Environment has three major external integration points:

e Data acquisition from non-Pl legacy logistics systems (such as a warehouse activity database)
e Pl Service access and use by non-PI logistics systems (such as warehouse management software)
e Simulation access for interested parties to view, use and evaluate simulations.

In addition, PI Service developers access the Pl services and simulation services via the secure VPN server. In
Figure 5 below we can see a visual representation of these integration points.

© ICONET, 2020 Page | 13

D2.21- ICONET PI Control and Management Platform - Final Version

e Point A (top left) represents Anylogic users accessing the ICONET PoC environment. This is unique to the
ICONET PoC and allows industry stakeholders to access, use and trial the simulations that utilize the PI
Services and demonstrate the KPlIs against which they will be evaluated.

e Point B (middle left) represents a legacy logistics service utilizing and communicating with a Pl Service

e Point C (middle right) represents an ICONET WP2 PI Service developer accessing the PoC environment
via secure VPN

e Point D (bottom left) represents a legacy logistics system passing info and datasets to datastores used

by the PI Services

These 4 scenarios are discussed in more detail in the following sections.

VPC

Public Subnet

A O
1 - Anylogic > Anylogic
”_Load Balancer Server
Anylogic c
User Q
VPN Server <
Private Subnet)\
_ ICONET
-~ N VPC WP2 Developer
B Pl Service Pl Service PI Service
Logistics o AP N VPC A A A
Service 7\ Gateway Link v v v
8 Pl Service Pl Service Pl Service
2% o
m P
S é g
g8
a2
el
15} / S3 Stor@

w)

Storage | Storage | Storage
‘ Bucket | | Bucket = Bucket
Logistics Data Stream Delivery Stream —>
Storage Storage Storage
o % Bucket = Bucket = Bucket

Data
Figure 5 - External Integrations

3.3.1 Simulation Access (A)

The simulation service is deployed on a high resource virtual machine running Ubuntu Linux. The simulation
service is actually comprised of a large number of distinct microservices, each communicating with each other.
The internal connectivity requirements have been discussed in Version 2 of this deliverable and can be
summarised as simply requiring the ability to access the various Pl Services that are deployed in the PoC.
However, in addition to this there are two further connectivity scenarios that are relevant in the final stages of

© ICONET, 2020 Page | 14

D2.21- ICONET PI Control and Management Platform - Final Version

the project. The Anylogic Simulation allows for users to create (or alter) simulations on the client on a local
machine or laptop and then push these new simulation scenarios to the cloud. Users can then use the Anylogic
user interface to observe the results of the simulations as they run. Initial requirements were that Itainnova had
the ability to do these tasks as they are the core simulation model designers and simulation experts of the project.
They did this by connecting to the secure VPN (as discussed in Version 2). However, at this stage ICONET looks
to make these offerings available to a wider audience. However, allowing external users to connect via the VPN
is neither practical or secure as it is desirable to prevent public access to the back-end services and systems. To
allow users to access the Anylogic systems an Internet facing load balancer is configured. This is an ELB (Elastic
Load Balancer) that is software-based load balancer available from AWS. This was configured as an Application
Load Balancer which means traffic can be filtered or blocked based on the traffic type (HTTP, HTTPS, SSH, etc.).
ELB is a distributed system backed by AWS, so it has resistance to some common attacks and also distributes
connectivity across multiple geographical zones. This means that in the event of a catastrophic failure at a specific
datacentre, the service will remain live and available. The ELB provides a static public address that users can use
to connect to the Anylogic Ul. Anylogic provides its own user management system so there is no need to
configure authentication, users, passwords, access control lists etc. The load balancer ensures that requests
made via HTTP/S are forwarded to the Anylogic services, and all other requests are denied as intrusions. The load
balancer also performs period health checks against the Anylogic service, a simple request to ensure the service
is still responsive. For the PoC a failed health check will generate a notification to the administrator but for
production level environments automated mitigating action can be configured.

3.3.2 Pl Service Access (B)

Although this is a research project, it is good design practise to consider security and data protection at the outset
of a development process. All the Pl Services are developed in a microservices ecosystem where each service is
supplied as a docker image. Each image has implemented the core functionality of that service and has not
implemented any schema’s related to networking, security or data protection. There are two reasons for this.
The first is that this allows developers to focus on the core solution they are building and doesn’t require
expertise in other areas or time spent developing in other areas. The second is that by ensuring only the core
functionality is addressed the Pl Services are universally adaptable to an external solution that address the non-
functional requirements.

Focussing on security and authorisation, we can see in Figure 5 above that external systems will access the Pl
services through an AP| gateway. In the case of the ICONET PoC the API gateway is a service provided by AWS
but there are many off the shelf tools that can be customised. The API gateway is essentially the “first point of
contact” with an APl from external systems. The APl Gateway resides in its own private network, which is public
internet facing, and appropriately firewalled and protected for this reason. The API gateway accepts incoming
requests and based on the specific parameters is routed through the VPC link to the front facing load balancer
of a given Pl Service. The VPC link is a dedicated network route that connects the private VPC where Pl Services
reside to the public facing VPC where the API Gateway is but can only be used by the APl Gateway itself. Figure
6 shows some of the VPC links used in the ICONET PoC and the Routing VPC Link points at the Routing Load
balancer.

© ICONET, 2020 Page |15

D2.21- ICONET PI Control and Management Platform - Final Version

VPC Links
VPC Links VPC Link details
routing (2eh7hh)
Q

This VPC link can only be used with REST APIs.

blockchain (fjx42k)
Details
encapsulation (9udux0)

Name (ID)
routing (2eh7hh)

networking (33evkh)
optimisation (kv3d62)

© routing (2eh7hh)
Target NLB Status

shipping (u3943) The Network Load Balancer of the VPC targeted by the VPC link. Available

routing-lb [4
Figure 6 - VPC links to Service Load Balancers

There are many possible actions the APl gateway can perform before but the main focus in this implementation
is that the API gateway is configured with an authoriser. The authoriser can be configured to work with existing
identity management systems to allow only requests that contain authorised tokens and secret keys to access a
specific Pl Service. This allows authorisation and access to all Pl Services to be managed in a centralised manner
while offloading this responsibility away from the PI Service developers.

3.3.3 Developer Access (C)

This integration point is for development and administrator access only. By design only interfaces that require
external access are made accessible on public networks. There are a number of additional interfaces and
components that are in the PoC environment that are not accessible publicly for security reasons. To allow the
PI Services developers access for deployment, test, verification etc. a VPN (Virtual Private Network) service was
configured. This allows developers to access the internal networks of the PoC environment from their local laptop
or workstation as if the laptop was actually part of the PoC environment network. It does so in a highly secure
manner ensuring no unwanted access can occur. This scenario is discussed in more detail in the intermediate
version of this deliverable (D2.20).

3.3.4 Data Acquisition (D)

One of the core drivers of the Pl Services in ICONET is the data provided by the Living Labs. This is reflective of a
real-world implementation of the Pl and Pl Services scenario. The Pl Services themselves provide abstraction,
common protocols and standards, analysis and prediction among other functions, but they are all powered by
the data provided by logistics organisations. This data can be day-to-day operational data such as the exchanging
of orders or it can be large scale data for analytics processing, such as a month’s worth of data related to late
deliveries. The daily operations of data exchange are handled by the Logistics Web Service and the Shipping
Service, but large-scale datasets (or data streams) for analytics need a dedicated consumption strategy.

© ICONET, 2020 Page | 16

D2.21- ICONET PI Control and Management Platform - Final Version

Data streams (4) info

Q
Data stream name r'S Open shards v Status v
1w 1 © Active
112 1 © Active
3 1 @© Active
4 1 © Active

Figure 7 - Living Lab Input Streams

There are a large number of possible strategies for large scale data consumption, but many are based on similar
approaches. As shown in Figure 7, within the ICONET PoC a data stream was created for each Living Lab. A data
stream is a dedicated API endpoint where data can be submitted via API requests. Data is forwarded to the data
stream by an agent which is installed and run at the data source, making API requests to the stream. The agent
is simple and light weight and usually works by simply capturing log files as they are generated. Each stream has
some configuration options and allows for monitoring of the incoming data to ensure the stream is active and
functional. This means that each Living Lab or real-world data source can be monitored independently with
regards frequency of data and is an early warning mechanism if data streams fail. Figure 8 below shows the
monitoring dashboard for the Living Lab 1 data stream.

Amazon Kinesis > Datastreams > (11
T e Delete

Stream details

Status ARN
@ Active i 1:331447178759: 1

ing Config i Enhanced fan-out (0)

Stream metrics info

Add to dashboard 1h 3h 12h 1d 3d 1w custom - ED

Get records - sum (Bytes) Get records iterator age - maximum (Milliseconds)
Various units Miliseconds

629M 1

315M 05

0 0
14:30 15:00 15:30 16:00 16:30 17:00 14:30 15:00 15:30 16:00 16:30 17:00

@ Maximum get records Limit @ GetRecords.Bytes @ GetRecords.IteratorAgeMilliseconds

Get records latency - average (Milliseconds) Get records - sum (Count)

Milliseconds Count

T————— A !

Figure 8 - Data Stream Monitoring

The data stream passes the data to a delivery stream. This is essentially a dedicated agent that consumes data
coming out of the stream, processes it and sends it to its final destination. The delivery stream has the ability to
convert the data into a common format, encrypt it and save it in a dedicated storage slot for this data steam.
Each Living Lab has a dedicated data stream, delivery stream and storage space. Figure 9 shows the delivery
streams for each Living Lab in the management console and Figure 5 (Point D, bottom left) shows the data
ingestion point and the components discussed here. In the case of the ICONET PoC AWS Firehouse and S3

© ICONET, 2020 Page | 17

D2.21- ICONET PI Control and Management Platform - Final Version

services were used for this. These systems are based on industry standards used in other major tools such as ELK
(Elasticsearch Logstash Kibana) and the strategies employed can be reused in these tools if needed.

fs Create delivery stream

Find delivery streams 1

Name Status Last Updated -~ Source Data transformation Destination

Amazon S3

[~ Active 2020-09-07T12:11+0100 2z Disabled
II2-data (2

Amazon S3

-09- . -
" Active 2020-09-07T13:22+0100 " Disabled 11-data &

Amazon S3

-09- : Z
3 Active 2020-09-07T14:14+0100 13 = Disabled I3-data &

Amazon S3

-09- -]
114 Active 2020-09-07T14:15+0100 4 7 Disabled l4-data

Figure 9 - Living Lab Data Delivery

3.3.5 Node-to-Node Communication & Integration with Legacy Systems

Node-to-Node communication is a critical and key element to the Pl concept. In the above scenarios, section Pl
Service Access (B) discusses the manner in which legacy systems will communicate and access Pl Services. The
same technologies, approaches and policies will govern how two Pl Nodes will communicate. The Shipping PI
Service serves as the interface for Pl Node to another node, and therefore two Shipping services will exchange
information about PI Orders across AP| gateways. As before, the APl gateway will manage the implementation
of the authorisation and access, security tokens etc. but this must be managed across multiple nodes. In early PI
pilot programs, the Pl will essentially be a “network of networks” where two transport and logistics organisations
will agree to connect their networks using Pl protocols. In these circumstances the management of tokens and
authorisation can be handled manually. As the networks grow in numbers of participants it will become
impractical to manage authorisation, keys and identity manually and will require central management, likely
owned by a local trusted transport and logistics entity such as a port authority.

Integration with legacy systems such as ERP, WMS, TMS is also a critical element in terms of Pl Integration. Pl
systems, in particular for early adoption of Pl and PI pilot programs. Pl Services will initially be unable to function
in isolation and will require significant integration with legacy systems in order for the Pl to be leveraged. The
exact manner and means of integration falls into distinct layers:

e The business level — this would be where organisations have agreements to connect their networks
together. This is a practical and legal process, not a technical one.

e The data level — the Pl is the common data model, so that has been already define by GPICS and PI
Architecture, however the interface between existing legacy systems and PI Services will be required,
and this is a service provided by Pl Service developers and IT staff in logistics organisations in a
coordinated effort. There can be no “universal adapter” as there are many different legacy systems with
their own data models. Although rare currently, standardized data models for logistics are becoming
more prevalent in research and industry and should be utilized for Pl pilot programs.

e Access level —this is concerned not with what is communicated — but how is relevant to this document.
Regardless of the data model the manner and means is likely to be a REST APl based communication in
line with existing Pl Services. Authentication will likely be via authorised token or VPN or a combination
of both and these scenarios both align with existing external connectivity scenarios for the PoC
Integration Platform. It is possible that an intermediate application such as a “data adapter” is required
but this is simply to change the format of the data and something like AWS Lambda using serverless
functions can be utilized to do this. Therefore, the combination of APl gateways and AWS lambda provide
and out-of-the-box approach for legacy integrations with Pl Services in a manner and means described
in section 3.3.2.

© ICONET, 2020 Page |18

D2.21- ICONET PI Control and Management Platform - Final Version

4 Deployment Strategies, Methodologies and Procedures

While ICONET is a research and development action, it is worth considering how the technical assets produced
by the project can be adopted in a real-world production engagement. In modern cloud deployments the CI/CD
(Continuous Integration/Continuous Deployment) approach is widely adopted and suits the needs of this project
well. CI/CD is based on the idea that as a developer commits new code and new changes, these are integrated
and deployed immediately as long as they pass a series of tests and verifications. This means that new features
and fixes can be made available to users immediately, in opposition to the “scheduled release” approach which
requires all changes and updates to be packaged together and all services and components to release these
changes in sync. This means updates will be complete but unused while other updates are in development.

4.1 Pipelines

The key mechanic that powers Cl/CD is the concept of a pipeline. A pipeline is simply a series of steps that the
service or application passes through from code commit though to deployment.

</Code>

Source Control

CD Pipeline

Figure 10 - CI/CD Pipeline

As we can see in Figure 10 a developer will commit a new codebase to the source control repo for that component
or service and this will initiate the build process. In the above example the integration phase will build the
component, run the unit tests (self-tests) and the integration tests (testing the components behaviour in relation
to other components) before moving to the deployment phase. In the deployment phase the service is
committed to the docker registry for future re-use if needed, deployed into the staging environment and then
deployed into production. All Pl Services in the ICONET PoC are deployed into AWS Fargate clusters. Fargate is a
serverless compute engine that the Elastic Container Service uses to run containerised applications. Fargate has
been discussed in more detail in the intermediate version of this deliverable (D2.20). It should be noted however
this is just one potential pipeline configuration, it is possible to add any number of stages in the pipeline

© ICONET, 2020 Page | 19

D2.21- ICONET PI Control and Management Platform - Final Version

depending on requirements. For example, a security audit and evaluation is another common stage that pipelines
will include. As already stated, this project was to focus on the use of PaaS as much as possible, so the pipeline
systems provided by AWS were leveraged. However major pipeline systems available from other cloud vendors
or open source options such as Jenkins are very similar in their approach and use in that they accept assets and
resources from external sources or previous steps, perform and action and based on the results perform one or
more subsequent steps. On AWS the pipeline is provided as part of the AWS developer tools:

1.

CodeCommit: This allows you to create source control repos. ICONET has 17 different source code
repositories for various versions and sub-components of the services developed for WP2.

CodeArtifact: This allows storage and version control of artifacts created as part of a build process (for
example a java library jar file)

CodeBuild: This allows for the building of applications. In the case of ICONET all services are
containerised, so the build phase builds docker images using the Dockerfile in the source repository and
packages in the source code and dependencies required for the image.

CodeDeploy: This tool allows the creation of “applications” to define how multiple components and
services might make up a single application. Then this application can be deployed using images from
the build phase into either a staging environment or straight into a production environment. In the case
of ICONET services are deployed into ECS (Elastic Container Service) Fargate clusters.

Pipeline: This is the tool that allows the creation of an actual pipeline composed of the previous 4 tools.
As we can see in Figure 11, the codebase and docker registry make up the source phase of the pipeline,
then there is a test phase and finally a deployment phase, but it’s possible to add an intermediary stage
at any point in the pipeline such as a security audit.

Developer Tools CodePipeline Pipelines routing Edit routing

Editing: routing [vetete |[cancet | [IEZSN

Edit: Source

Source ® Image ®

AWS CodeCommit Amazon ECR [2

Probe ®

AWS Lambda 2

Deploy ®

Amazon ECS (Blue/Green) [2

Figure 11 - Routing Pipeline

© ICONET, 2020 Page | 20

D2.21- ICONET PI Control and Management Platform - Final Version

4.2 Recommended Pipelined Testing Strategies

There are a number of potential approaches for testing the Pl services before deployment. If a Pl Service
developer has included a set of unit tests, then it’s simply a matter of running these tests. The creation of Unit,
APl and Integration tests are part of the development process and outside the scope of this deliverable. However,
IBM did build out the frameworks and pipelines to support testing, as well as implement the security audit
process as discussed below.

4.2.1 Unit Tests

Unit tests are a set of functions provided by the developers that ensure that for a given set of inputs, expected
outputs are received for the various internal components of a service. To avail of this one can either launch the
docker image with some specific command line variables passed, to initiate the tests, or one can check out the
codebase and run the tests directly. Which approach will depend on the type of approach chosen by the
developer. Both are supported by the AWS Developer toolkit.

4.2.2 API Tests

API Tests will simulate real requests to the API service and verify that responses returned are accurate. These
tests are not always applicable as some services will have multiple downstream dependencies that are required
for the APl responses to be delivered. However, some services do not have such a reliance or can be adapted to
not need one. For example, the routing service depends on the networking service, but the routing service has
been designed to allow the static upload of a Pl network. This allows the service to be tested by ensuring the
correct routes are returned. To perform these tests AWS Lambda can be used. As discussed in D2.20, version two
of this deliverable, AWS Lambda is a serverless code execution engine. This allows relatively simple scripts or
code to be written on run on a schedule or as needed. In this instance AWS lambda can make a HTTP API REST
request to the service being tested, verify the result and return a PASS or a FAIL.

4.2.3 Integration Tests

Integration Testing verifies the components will work together as designed. Using routing as an example once
more, routing requires the networking service to operate. To perform an integration test for routing, the pipeline
will deploy the new version of the routing service to be tested to a temporary staging cluster along with an
already known valid version of the networking service for the routing service to make requests to. The routing
service will be again tested by verifying the APl requests using AWS Lambda or similar. If the single APl test passes
but the integration test fails, this highlights a likely issue in how the services are communicating, but not how
they function.

4.2.4 Performance Tests

Performance testing is outside the scope of the ICONET project as any use of the Pl services is taking place in
isolated pilot programs with the living labs. Performance testing is needed to address the limits of a single Pl
Service instance with regards the number of concurrent requests it can accept and also to understand the
manner and means of failure that will be observed as the service begins to reach that limit and then actually hit
this limit. These kinds of KPIs are relevant where services are experiencing high usage in the form of multiple
requests per second. While the volume of requests in the ICONET PoC is low enough not to require performance
testing, this kind of testing and evaluation will be critical in any scaled real-world pilot programs for the PI.

4.3 Security Audit

The nature of microservices deployments with Docker as their backbone requires a new approach to security
audits and validations. Docker images are built by inheritance from a base image. These are usually operating
systems as Docker images (Ubuntu, CentOS etc.). Some additional tools may be added to this base image (for
example nodejs) to give it new functionality and this now becomes a new image. Then finally the Pl Services
developer will pick an image to be the basis for the Pl service. This means that any given docker image may have

© ICONET, 2020 Page | 21

D2.21- ICONET PI Control and Management Platform - Final Version

a number of inherited images that it is built upon. Each with a vast array of potential security audit points. In
addition to that almost all PI Services are built using python. As part of the process of building a docker image
the python dependencies are installed. These are libraries that the Pl Service application will need in order to
function correctly. The developer has full control to add as many dependencies as they see fit from any number
of potential sources. The resulting docker image will contain the Pl Service code but will also contain a large
number of “unknowns” in terms of base image components, libraries etc.

1 &
Image URI ::shed S Digest (S::) . :tc:tr:ls Vulnerabilities
1447178759.dkr.ecr.eu-
iist— arefdaeces 09/18/20, A 2 Medium + 941
. 03:27:22 sha256:506ada3bs. . . 454.58 Complete X
1.amazonaws.com/iconet- PM others (details)

router-113:latest

Figure 12 - Vulnerability Notification

It’s not feasible to audit these by hand so a docker image audit tool is used to perform this. As seen in Figure 12,
In the case of ICONET, the audit tool allows for images to be scanned as they are pushed to the registry, and a
notification generated if the resulting report requires attention. An example report is shown in Figure 13. The
report indicates two medium severity CVEs (Common Vulnerability or Exposure). However, there are a number
of open source and commercial alternatives such as Anchore or Clair.

ECR Repositories iconet-router-113 sha256:506ada3b803501d1ae5be617d07d3e6ac8677db38e00fa26a7a6334a8d81bb58
Overview
M critical M High M Medium M Low Informational Undefined

Vulnerabilities

Q 1 2 3 4 5 6 7 .. 10 >

Name v Package v Severity ¥ Description

The _gdGetColors function in gd_gd.c in PHP 5.2.11 and 5.3.x before 5.3.1, and the GD Graphics Library 2.x, does not
properly verify a certain colorsTotal structure member, which might allow remote attackers to conduct buffer
overflow or buffer over-read attacks via a crafted GD file, a different vulnerability than CVE-2009-3293. NOTE: some
of these details are obtained from third party information.

CVE-2009-3546 [4 libwmf:0.2.8.4-10.6 MEDIUM

Multiple integer overflows in libgd in PHP before 5.2.4 allow remote attackers to cause a denial of service (application
crash) and possibly execute arbitrary code via a large (1) srcW or (2) srcH value to the (a) gdimageCopyResized
function, or a large (3) sy (height) or (4) sx (width) value to the (b) gdimageCreate or the (c) gdimageCreateTrueColor
function.

CVE-2007-3996 [4 libwmf:0.2.8.4-10.6 MEDIUM

When apr_time_exp*() or apr_os_exp_time*() functions are invoked with an invalid month field value in Apache

Portable Runtime APR 1.6.2 and prior, out of bounds memory may be accessed in converting this value to an
e 2017 10c12 FA Ame1EaE Lo ane Hima ava +ualin il linm thn A~ A ctatic haan tnlin ar racoltinn in Aramram

Figure 13 - Vulnerability Report

Clicking the CSV link on the left will bring more detail on the CVE and how to resolve as shown in the detailed
report in Figure 14. In this instance, we can see three versions of this library that are vulnerable to attack, so

© ICONET, 2020 Page | 22

D2.21- ICONET PI Control and Management Platform - Final Version

changing to any of the known fixed versions will resolve the issue. In this circumstance the issue was with the
base docker image, not the developers code, so to update it will require rebuilding the base image with the
libraries updated.

Vulnerable and fixed packages

The table below lists information on source packages.

Source Package Release Version Status
libgd2 (PTS) stretch 2.2.4-2+deb9u5 fixed
stretch (security) 2.2.4-2+deb9u4 fixed
buster 22.5-52 fixed
bullseye, sid 2.3.0-2 fixed
libwmf (PTS) stretch 0.2.8.4-10.6 vulnerable
buster 0.2.8.4-14 vulnerable
bullseye, sid 0.2.8.4-17 vulnerable
racket (PTS) stretch 6.7-3 fixed
buster 7.2+dfsg1-2 fixed
bullseye, sid 7.8+dfsg1-1 fixed

The information below is based on the following data on fixed versions.

Package Type Release Fixed Version Urgency Origin Debian Bugs
libgd2 source etch 2.0.33-5.2etch2 DSA-1936-1

libgd2 source lenny 2.0.36~rc1~dfsg-3+lenny1 DSA-1936-1

libgd2 source (unstable) 2.0.36~rc1~dfsg-3.1 medium 552534
libwmf source (unstable) (unfixed) unimportant

php5 source (unstable) (not affected)

racket source (unstable) 5.0.2-1 unimportant 601525

Figure 14 - CVE Information

4.4 Deployments

The final phase of the pipeline is deployment. There are two deployment paradigms that have been considered.
In the case of a less substantial update — for example a minor bug in the Ul (User Interface) of a web service - a
typo. To fix this a single service needs to be updated and it has minimal or no bearing on other services. Services
are packaged within the AWS dev-ops tools as applications. An application may comprise of one or more services
that are linked closely together. For example, the routing service operates by itself so an application definition
comprises of a single service. However, the |oT service is made of multiple services, so the loT Container tracking
application is comprised of all these services. The application also manages the historical revisions of the
application and components that were deployed in the past. This facilitates rolling back to known functional
versions in the event of a faulty deployment.

© ICONET, 2020 Page | 23

D2.21- ICONET PI Control and Management Platform - Final Version

Developer Tools CodeDeploy Applications routing-pipelined routing-grp routing-grp

Edit deployment group

Application

Application
routing-pipelined
Compute type
Amazon ECS

Deployment group name

Enter a deployment group name

routing-grp

100 character limit

Service role

Enter a service role
Enter a service role with CodeDeploy permissions that grants AWS CodeDeploy access to your target instances.

Q, arn:aws:iam::331447178759:role/CodeDeployECSRole X

Environment configuration

Choose an ECS cluster name

routing-pipelined v

Choose an ECS service name

route-pip-svc v

Figure 15 - Deployment Group

Within an application, a deployment group is configured for each Pl Service. As seen in Figure 15, the deployment
group allows for the definition of where the PI Service will be deployed to, specifying which Fargate cluster and
which service definition within that cluster to use. The deployment group also defines the load balancer and port
assignments of the Pl Service and finally the traffic rerouting strategy.

The traffic rerouting strategy allows for the setting of a deployment schedule by specifying a specific time to
remove the old service and deploy the new one. An approach here could be to engage the deployment at night
when there are little or no users if the service is only used during the day. The traffic rerouting strategy can also
set rate of rerouting. For example, every hour redirect and additional 10% of the traffic to the new deployment
until the old deployment is receiving no traffic. This allows for careful monitoring of the new service or
deployment an ensures issues are highlighted in time to reverse the deployment.

An alternate strategy for deployments is to use a staging environment. This is more applicable for deploying
much more significant changes that encompass multiple Pl Services acting together, such as a new standard or
policy. In this situation there are two production environments available. One is accepting traffic from users,
while the other is used to deploy the latest service versions. The components have already been tested via the
pipeline, but some validation and testing can take place of the environment overall. Once this is done, the
endpoints that users are using to access the environment is switched from the existing live environment to the
staged. This is instantaneous and there is no downtime from the user’s perspective. Once again, if any issues are
observed, the endpoints are simply swapped back to the known good environment.

© ICONET, 2020 Page | 24

D2.21- ICONET PI Control and Management Platform - Final Version

Configure Iconet-env-staging

Presets
Start from a preset that matches your use case or choose Custom configuration to unset recommended values and use the service's default values.

Configuration presets
Single instance (Free Tier eligible)
Single instance (using Spot instance)
High availability
High availability (using Spot and On-Demand instances)

© Custom configuration

Platform

Multi-container Docker running on 64bit Amazon Linux/2.22.0

Change platform version

Software Instances Capacity
Rotate logs: enabled Root volume type: container default Environment type: load balancing, auto scaling
Log streaming: enabled Root volume size (GB): container default Availability Zones: Any
Environment properties: 1 Root volume IOPS: container default Fleet composition: On-Demand instances
env Security groups: sg-Obf43e9e12fab1619 EC2 instance type: t2xlarge
EC2 image ID:ami-09c44e3b18627e52
Instances: 1-4
Edit Edit Edit
Load balancer Rolling updates and deployments Security
Load balancer type: classic Deployment policy: Al at once Service role: arm:aws:iam:331447178759:role/aws-elasticbeanstalk-
Usteners: 1 Rolling updates: disabled ec2-role
Session stickiness: disabled Health check: enabled Virtual machine key pair: rancher_rebuild

Cross-zone load balancing: enabled

Virtual machine instance profile: ec2power
Connection draining: enabled " >

Figure 16 - AWS Beanstalk Configuration

AWS abstracts this process out using a tool called beanstalk. Beanstalk allows you to clone an environment once
it has been deployed once and manages the public endpoints to that environment. This then allows for multiple
versions of an environment to be easily recreated and multiple deployment pipelines configured as requirements
need. For example, there may be a live environment, a staging environment and a demo environment (which
allows critical customers to view potential new features and give feedback while development is still underway).
Beanstalk allows for centralised management of all environments and some of the specifics within those
environments also, as shown in Figure 16.

© ICONET, 2020 Page | 25

D2.21- ICONET PI Control and Management Platform - Final Version

5 Machine Learning Deployments

A number of Pl Services either currently or will in the future leverage machine learning technology. These services
will still be leveraged via REST APIs as the other services are, but with a different analytical approach behind the
APl interface. As seen in the Deployment section, the cycle for other services is straightforward:

e Developer checks in new code

e Code is built into a service

e Service is tested, audited, verified
e Service is deployed

However, services that are based on machine learning approaches require a different approach to pipelines and
deployments. The basic process for the development and creation of a machine learning API service covers the
following:

1. Data acquisition — All machine learning research requires significant datasets to work with for training
and validation.

2. Data Curation — Removing Data that is not relevant. For example, if analysing traffic patterns for
commuting rush hour, weekend data can be removed completely.

3. Data pre-processing —the data may not be in a desirable format and will need to be converted depending
on the tools being used and the formats they will accept

4. Definition of a machine learning approach or algorithm - This is the main task of the develop, ensuring
they pick an approach that matches the datasets and goals of the research

5. Training the machine learning model — this is the most computationally (and monetarily) expensive and
time-consuming part of the process. The time required will vary vastly depending on the hardware
available for training. CUDA GPUs will increase the speed at which training can take place but these
components are extremely expensive to purchase and equally expensive to rent through a cloud
provider.

6. Trained model is verified against the dataset — The dataset is usually split into two parts, one to train and
one to validate the model. Once the model has been validated to some chosen metrics (such as accuracy
or rate of false positives, false negatives etc.)

7. The model is deployed to an API service that accepts requests, passes them to the model, captures the
results and returns them to the requestor.

5.1 Requirements for new Machine Learning Deployment

As can be observed, there are a number of additional steps and there are now more than one places where a
change could initiate the requirement for a new service deployment:

1. The quality of the datasets for training changes

2. The format of the datasets for training changes

3. The developer changes the algorithm or approach (or alters the existing approach slightly)
4. A new dataset is provided

The last option, number 4 is of course the most common and most frequent. A machine learning service is only
as good as the data that it has been trained on. Therefore, any analytics being done on data that changes
periodically, seasonally or in line with other trends (financial, or consumer for example) will require new models
trained on data that represents these latest trends. A simple example of this would be any analysis of the product
choices consumers make for delivery during the summer would be meaningless during the months leading up to
Christmas. Similarly, analytics noting an increase in Pumpkin sales during the month of October will likely not be
relevant during the rest of the year.

© ICONET, 2020 Page | 26

D2.21- ICONET PI Control and Management Platform - Final Version

5.2 Microservices Approach

The initial development process combines the actions of curation, pre-processing, model definition and training
into a single application or script. This works well at early development as the developer can make multiple
changes in parallel however as the application approaches production, we see issues with this. A change to the
pre-processing method should not require us to retrain the image. Therefore, an emerging trend is to split the
actions into individual microservices, each dedicated to a specific task. This allows updates to one service without
interference with another. In the case of ICONET these services are docker based (as are all components in
ICONET) which allows them to be pipelined and deployed in the same manner as the other Pl Services and using
approaches discussed in the Deployment section.

5.3 Model Training as a Service

However, there is an exception to this approach — the model training service will require access to specific
hardware. This is both expensive and complicated as most PaaS offerings do not easily allow access to such
hardware in their container compute services. One alternative is to purchase (or reserve) some dedicated
hardware with a GPU installed, but this is expensive and also not very cost effective as models are only trained
periodically.

PaaS offerings that are specifically design for machine learning are the best approach here. They will utilise
industry standard tools (such as Jupyter Notebooks) to allow developers to migrate their algorithmic approaches
to model training into the cloud. For the ICONET PoC AWS Sagemeker was used but all major cloud vendors have
similar services such as IBMs Watson Machine Learning or Google’s Al Platform. This allows models to be trained
as needed in the cloud. This brings a number of advantages, the first of which is cost. Since the hardware is only
engaged for the time needed to train the model, there is no lost cost to hardware sitting idle. Additionally, there
is no overhead in terms of administration or setup for dedicated hardware and because the models are trained
using a PaaSs service, they accessible by other PaaS systems such as the pipeline tools and deployment tools.

ICONET-LL4-Opt

Job settings

Job name Status SageMaker metrics time series

ICONET-LL4-Opt Disabled 1331447178759 r0le/service-
- Starting rol nSageMaker-ExecutionRole-

202007307201804 [4

ARN View history Training time (seconds)
arn:aws:sagemaker:eu-west-

1:331447178759:training-job/iconet-ll4-opt Creation time

Oct 08, 2020 10:58 UTC Billable time (seconds)

Last modified time
Oct 08, 2020 10:58 UTC Managed spot training savings

Tuning job source/parent

Algorithm

Algorithm ARN Instance type Additional volume size (GB) Volume encryption key
- mlmd.xlarge 30 -

Training image Instance count Maximum runtime (s)
685385470294 dkr.ecr.eu-west- 1 86400
1.amazonaws.com/xgboostlatest

Maximum wait time for managed spot training(s)
Input mode
File

Managed spot training

Disabled

Figure 17 - Sagemaker training job in progress

Once the training and algorithmic approach is defined, this can be created as a training job as shown in Figure
17. Combined with new data either being streamed or manually uploaded to a dedicated storage location, this
allows training jobs to be run on a predefined schedule, occurring frequently enough to account for any trends
in the dataset (weekly, monthly, etc.). The resulting models are then stored in in a dedicated storage location
within the cloud and are accessible for further use as shown in Figure 18

© ICONET, 2020 Page | 27

D2.21- ICONET PI Control and Management Platform - Final Version

Amazon SageMaker > Models > xgboost-2020-10-08-09-38-35-659

xgboost-2020-10-08-09-38-35-659 Actions v_| [Create batch transform job | | _create endpoint

Model settings

Name ARN Creation time 1AM role ARN

Oct 08, 2020 09:51 UTC armawsiam: 331447178759 role/service:
1:331447178759:model/xgboost-2020-10-08-09- role/AmazonsageMaker-ExecutionRole-
38-35-650 20200730T201804 [4

Container 1

Container Name Model data lacation

Container 1

659/output/model targz [2
Image
. Mode

Single model
Training job
xgboost-2020-10-08-09-38-35-659

Figure 18 - Saved Model

5.4 Machine Learning as a Service

At this point, the model has been trained as is available in an S3 storage bucket (AWS refers to storage locations
as “S3 buckets”). There are two available approaches from this point forward. It is possible to use the arrival of
new model in S3 to trigger a pipeline build similar to the pipeline described in the Pipelines section. In fact, much
of the pipeline can be reused, aside from the triggering incident (a new model instead of new code. A machine
learning based service is built into a docker image in the same manner as any other Pl service, however as part
of the build process it will import the model from S3.

The alternative approach is to avoid the use of docker images entirely. Usually, the bulk of the processing work
in a machine learning based service is performed by the model itself, and the docker image and other code within
are simply there as frameworks to support the use of this model, usually to simply accept requests via REST API
and pass the data provided to the model, capture the result and return it to the requestor. Since this functionality
is both simple and likely to be similar for any service that relies on a machine learning model, we can implement
it using PaaS in a much more efficient, secure and cost-effective manner.

Automatic
Scaling
L \ T~ o
Y API ’ AWS Model
f \ Sagemaker
> Gateway _ Lambda > Endpoint =>{Load Balancer Compute
Client
Sagemaker
Compute
i - Deployment ',
NYH —ﬁ s3 —> podel > Model >
'i: =!’ Bucket 9 Sagemaker
I — . Compute
Datasets
or _

Streamed Data

Figure 19 - Machine Learning Endpoint - PaaS Powered

Figure 19 shows the various components involved in providing a machine learning powered service using only
PaaS services. On the top row we can observe:

© ICONET, 2020 Page | 28

D2.21- ICONET PI Control and Management Platform - Final Version

1. The client — this is likely another PI Service or a 3™ party logistics management tool that is availing of
machine learning analytics.

2. The APl Gateway — Also seen in the Integration Strategies & Approaches section, this tool provides a
public facing interface to the API. Through a simple configuration process the APl Gateway can handle
some non-functional mechanics such as authentication keys, authorisation, certificate management and
so forth. Requests are made directly to the APl Gateway and once the authentication & authorisation
elements are validated, the request is passed on (in this case) to AWS Lambda.

3. Lambda is a serverless execution engine provided by AWS. Serverless execution allows for relatively
simple applications or scripts to be run without the overhead of managing the libraries or underlying
compute such as docker, Kubernetes, virtual machines etc. In this case the code that captures the request
data from the API request and passes it to the machine learning model is implemented as a lambda
function because it is quite straightforward.

4. AWS Sagemaker provides an endpoint for a given machine learning model, as a single point of access for
entry. This can take some configuration in terms of the compute resources allocated to the endpoint and
also serves as a point of monitoring where some metrics such as rate of request can be captured.

5. The endpoint sends requests to a load balancer which distributes them across however many compute
resources are available. It is possible to configure the endpoint compute nodes to scale automatically as
needed — adding additional nodes as the rate of requests or complexity of requests increases ensures
there is no degradation in performance but ensures there is no cost for hardware sitting idle either.

On the lower half of Figure 19 we see the general steps for the creation of the models that the endpoint is using.
Data is either stream or uploaded (more details in the Integration Strategies & Approaches section) and is stored
in S3 storage buckets. The data is used to train new models which are deployed by Sagemaker to the model
endpoint. What is noteworthy here is that aside from the core work of designing an algorithmic approach that
the model will use, there is no further overhead from a development perspective. A data scientist can do effective
and useful work without the support of additional developers and with minimal training in the AWS services that
support the service.

Looking to the future, low power edge devices operating in a fog network will be utilized for inference based on
machine learning models. This can also be combined with the concept of distributed learning, which spreads the
analytics across a variety of devices in a fog network with dispirit data sources, allowing for more accurate
analytics. This is discussed in more detail in the following section.

© ICONET, 2020 Page | 29

D2.21- ICONET PI Control and Management Platform - Final Version

6 Future Trends in Pl Service Deployment Models

The core goals of this deliverable and associated tasks were to provide a digital workbench that facilitated the
deployment, development and integration of the PI Services and other services and systems utilized in WP2.
Beyond that research was done to explore the non-functional considerations regarding the deployment, security
and access scenarios that the Pl Services may need to be coupled with. However, it is valuable to consider the
potential deployment models that will be prominent as the Pl begins to be introduced to real world logistics
operations in early pilot programs.

The EU has already identified emerging trends in cloud computing and has directed H2020 funding towards
projects exploring these future-looking computing paradigms. One of the major themes is to explore and
facilitate the “Cloud to Thing Continuum”.

In the last decade, more and more major organisations are moving away from traditional “On Premise” models
(where they deploy and manage their own data centres, equipment etc.) and moving their IT operations to the
cloud, usually engaging a major cloud vendor such as Amazons’ AWS, Google’s GCE, Microsoft, Azure or IBM
Cloud. However, in more recent years industry leaders like IBM are exploring trends moving towards the concept
of a hybrid approach. Combining the cost effectiveness of the cloud with the security and control of a private
datacentre (or private cloud). This has then further led to the concept of multi-cloud — where an organisation
should be able to engage multiple cloud vendors as well as their own datacentres, to leverage the strengths of
each that match their requirements and avoid being locked to any one approach.

The challenge in multi/hybrid cloud model is the overhead and complexity of trying to manage systems and
services that are spread across a myriad of providers and even physical locations. Each cloud vendor has their
own services, APIs, protocols, tools and private clouds will rely on open source tools or licensed tools. While
there is often overlap in the use of these tools between vendors, there is not always, and there can be version
and implementation mismatches.

The final emerging trend that requires consideration is the concept of edge and fog computing. Edge computing
refers to placing the compute power and other resources and resource management systems closer to the
consumers of said resources. A simple example would be a medium spec server that resides in a Pl Mover (Truck,
barge, ship or train) and has the capability to consume sensor data coming out of Pl Containers. Rather than wait
for connectivity to the cloud, this edge device will do its own analytics of the sensor data and forward the results
of these analytics to the cloud. By placing the device near the edge, the need to forward huge volumes of data
streams is dramatically reduced. The concept of fog computing expands this concept out further, to the idea that
there are multiple edge devices, in tiered or clustered sets that need to be managed in tandem with the cloud
services. Edge devices don’t always need to be resource heavy servers as in the example above, it could be as
simple as a raspberry pi (a low powered, small compute device), monitoring the rate of trucks entering a port
with a simple light sensor. These devices can use models that were trained in the high spec systems within the
cloud. The increasing trend is that any system or device that can be connected to a network can now be
considered part of a fog network. This applies to the transport and logistics domain as there are many systems
and devices currently in use today that will very soon (or already) have cost effective alternatives that have
enhanced processing and networking capabilities. Systems like handheld PDAs for delivery drivers, forklifts and
sensors on forklifts, trucks and GPS tracking, automated warehouse robotics and intelligent loading systems in
ports are all on the verge of a technological revolution that will see all of these systems joining the fog network.

6.1 Challenges for Multi-Cloud PI Services

So, with these trends in mind, how may they impact the Pl, and how will the Pl operate and exist in a world where
these trends have become more prominent?

© ICONET, 2020 Page | 30

D2.21- ICONET PI Control and Management Platform - Final Version

Flexible Cost Effective Cloud

Incomin
Distribution Centre

Pl Order Shipping
Service \ -
.)‘ Legacy Stock &

Management

Fleet Depot
Warehouse Managenfent Cloud

Service
Legacy Fleet Routing
Management Service -

Legacy Warehouse
Management

High Powered Compute Cloud

Pl Optimisation
Service

Analytics \ Historical

Data

Model Training «7 (Big Data)

Se §
N, _
sO’Data —

Edge Computing

= Y
\

Pl Containers
| | \ | 10T Sensors

Figure 20 - Multi Cloud Pl Example

In Figure 20 we propose a possible scenario in the future of Pl and how it relates to current trends in cloud and
edge computing. This example focuses on a logistics entity or node with a number of operational requirements.
During the initial adoption of Pl it is likely that existing legacy IT systems will still play a major role in the logistics
operations of this organisation. In this scenario the logistics organisation uses three in-house systems — a
Warehouse Management System, a Fleet Management System and a Stock Management System. The three
systems share information and coordinate as needed and these systems are often deployed (but not always
deployed) at the premises where they are used — for example the fleet management system is running on a
server at the depot where the fleet operates out of but the warehouse management system is a cloud based
software solution. In addition, the logistics organisation is leveraging the Pl and has deployed its own tailor
customed Shipping Service which serves as the entry point of this organisation into the Pl world. They have also
deployed the routing service and are engaging the Pl Optimisation analytics service. From Figure 20 there are
some points to note:

e The shipping service has been deployed into a simple, cost effective cloud vendor as the compute
requirements and resources needed for the shipping service are low. It should be easy to update and
manage it and require little overhead and be as cost effective as possible

e The Routing Service was deployed in an on-premise setting because the fleet management system is
deployed at the depot and the two services are closely coupled and integrated.

e The Warehouse management system is an out-of-the-box SaaS offering that operates entirely in the
cloud and is provided by a 3 party.

e The Pl Optimisation Service performs much more compute intensive and expensive operations, so is
deployed in a cloud vendor suited to this

e There are loT Sensors on shipping containers that report a number of metrics at all times, but they have
no memory for resource optimisation reasons.

e However, many modern trucks, trains, ships etc have edge devices to receive sensor readings and some
initial analysis and data curation of the sensor data takes place here.

© ICONET, 2020 Page | 31

D2.21- ICONET PI Control and Management Platform - Final Version

e The Pl Optimisation service consumes large scale data from multiple edge devices across multiple PI
movers which fuel analytics

This example highlights the many and varied likely communication lines in this scenario — there is almost every
conceivable data path occurring. Cloud vendors to other cloud vendors, cloud vendors to private clouds, legacy
systems to cloud systems, edge devices to cloud devices, sensors to edge devices and so on. Centralised
management of the systems, communication and orchestration of the applications within these systems is an
extremely complex challenge to overcome.

6.2 A Centralised Multi-Cloud Management System

As the multi-cloud paradigm is still somewhat recent there are a relatively small number of emerging multi-cloud
management solutions. Because this is a recent trend it’s difficult to identify a single industry leader. Indeed,
there are solutions provided by IBM, Redhat, Cisco, Dell, Citrix Rackware and many more. For this deliverable we
elected to focus on Redhat as Redhat technologies also underpin a lot of existing open source and Paa$
frameworks discussed in this document. Redhat provide a number of tools that each play a role in addressing
the issues above. It should be noted that the Redhat (or any other) multi-cloud management tools should be
considered as tools to work in tandem with existing cloud vendor Paa$S systems. However, before discussing
multi-cloud management solutions it is necessary to re-examine cloud vendors and some private cloud tools
from a new angle.

6.2.1 Public & Private Cloud APIs and CLlIs

In this document so far, we have seen a number of screenshots showing the management interfaces for AWS
tools and services. However, the GUI (Graphical User Interface) is not the only means to control and configure
these services. AWS also provides a CLI (Command Line Interface) and APl access. The CLI allows individual users
to make changes and configurations, create and destroy assets and more via a text interface only. This is
sometimes more desirable than using the GUI as it maybe be faster or easier if there is a lot of configuration text
to be entered. However more significantly the CLI tool can be used by automation scripts or tools. Dev-ops
engineers can write scripts in a language of their choice to automate certain actions using the CLI tool.

APl access performs much the same role, except it is designed only to be used programmatically or by automation
tools, not manually by a user. Both approaches use secure authentication as standard (username and password
for the CLI, tokens for the API) and are widely used and well documented. These tools are provided by all the
leading cloud vendors (Google, Microsoft, IBM, Amazon, etc.) but they are also often provided by private cloud
frameworks such as Openstack, VMware, Kubernetes, etc. Many tools and products that perform other functions
also provide CLI or API access (or both) such as networking systems (firewalls, switches), load balancers (F5),
storage clusters (Ceph) and more.

With so many interfaces for so many different products and services it is possible to create complex overarching
automation but there is a heavy overhead to creating, managing and maintaining these frameworks. However,
much of the work has already been done by Redhat Ansible.

6.2.2 Redhat Ansible

Ansible is an automation framework that operates through the command line using “playbooks”. A playbook is
simply a series of steps to be completed in a specific order. Playbooks are text files that indicate requirement
before a step is taken, how to take that step and then a way to validate the step was successful before moving
on. Ansible has a vast catalogue of libraries that allow it to interface with a huge number of products and services.
Everything from local systems to cloud vendors are available. An automation task could be as simple as creating

© ICONET, 2020 Page| 32

D2.21- ICONET PI Control and Management Platform - Final Version

a folder and moving a file to as complex as creating a virtual private cloud and associated networks in AWS and
provisioning 100 VMs (Virtual Machines) into it.

There are many pre-existing playbooks to perform commonly performed actions (such as the ones mentioned
above) but if a playbook does not exist it can be created by a dev-ops engineer or adapted from an existing
playbook.

While Ansible is excellent for preforming automated and complex tasks at scale, it is not designed for ongoing
maintenance and visibility. This role is fulfilled by RedHat CloudForms.

6.2.3 Redhat Cloudforms

CloudForms makes use of the existing APl and CLI access routes to public and private cloud tools as well as the
automation frameworks provided by Ansible to give a centralised management platform for a multi/hybrid cloud
environment. This platform gives centralised visibility of all resources in use across all resource providers as well
as facilitating creation, control and configuration of PaaS services and compute resources.

Capacity

Planning
Orchestration Monitoring

Policy Analytics

=
nlil

Discovery Reporting

~_~ CloudForms
/48 RedHat

Ansible Management
&
Catalogue Visibility

API Access
AP Access

-~

APl Access

p—
openstack O Google Cloud amazon. / S Azure

| { J {

00000 an ‘
& & 00000 |~ | ‘ o |

OpenStack Virtual Machines GCE Containerised Workload Instances

Windows based
Workloads

Figure 21 - Redhat Cloudforms

As we can see in Figure 21 CloudForms provides an interface to a number of different public and private cloud
providers through API access, which allows for a flexible range of different workload types and resource types.
In this instance CloudForms is managing traditional VMs from Openstack, a containerised workload from GCE,

© ICONET, 2020 Page | 33

D2.21- ICONET PI Control and Management Platform - Final Version

pay-per-use dynamic services from AWS and MS Windows based workloads from Azure. The management
interface for CloudForms allows for a number of features:

e Insight — This gathers information about resources across all providers to give a single point view of the
status of workloads, and offers recommendations based on status

e Control — This allows for orchestration of workloads across multiple providers. Each cloud vendor will of
course provide its own solution for workload orchestration (this allows for automatic scaling, healing
etc.) but CloudForms enables orchestration across providers, allowing workloads to be moved towards
or away from certain providers depending on the workload requirements.

e Automate — Complex automated workflows can be created that leverage multiple providers in
cooperation to create, configure or destroy resources and design workloads

e Integration — CloudForms can be integrated with a number of existing industry standard automation
tools and APl interfaces for significant customisation

6.2.4 Multi/Hybrid Cloud Networks

While CloudForms will provides a centralised manner in which to configure resources across multiple resource
providers, it is worth noting that it will not automatically allow for those providers to communicate with each
other, and without this communication path the power of CloudForms or any multi-cloud environment is highly
limited. Therefore, it is necessary to formulate secure communication paths between environments on different
cloud providers.

SDN (Software Defined Networking) provides a universally adoptable approach for this. As we’ve seen in the
Integration Strategies & Approaches section in this deliverable and also in the intermediate version of this
document (D2.20), Software Defined Networks have been utilised in the creation of the Proof of Concept (PoC)
environment for ICONET. This is based largely on the concept of the Virtual Private Cloud (VPC) which is a private
network space that administrators can create to contain whichever resources and assets they wish to deploy.
The VPC can be further configured into different zones and virtual networking functions are used to create
subnets, switches, routers, NAT gateways, public gateways, DNS servers and so on. VPCs are highly secure and
both public and private access routes can be carefully configured to maintain this security.

For two private cloud environments to communicate directly there are a number of options available but there
are two common approaches. The first being public API access. This has been discussed in the Integration
Strategies & Approaches section, and involves APIs that are open to the public internet that provide access to
functions or resources within the environment. The advantage to this is that there is minimal configuration
required, but the disadvantage is that any public facing interface comes with some security risks. Therefore,
sturdy security and authentication measures are needed to secure any public facing API. Most cloud vendors will
provide these functionalities, private cloud environments may need more manual configuration. The alternate,
more secure option to use VPN (Virtual Private Network) connections. In the intermediate version of this
deliverable (D2.20) VPNs were discussed as the manner in which developers created secure connections to the
VPC for the PoC from their laptops or desktops. However, VPNs can also be used for Site to Site connections,
allowing for a number of VPCs across multiple cloud vendors to be linked in a secure manner. Depending on the
configuration the connection between networks will appear seamless to the resources and assets within these
networks, and this can operate in tandem with management systems such as CloudForms to ensure true
cooperative multi-cloud workloads.

© ICONET, 2020 Page | 34

D2.21- ICONET PI Control and Management Platform - Final Version

6.2.5 Combining SDN, Ansible, CloudForms for a Multi-cloud Pl Scenario

Returning to the example in Figure 20 above but focussing on the loT data streams and processing elements we
can examine the creation and configuration of the multi-cloud approach needed. We can break the setup into
some distinct steps the first of which mirrors the PoC environment creation and configuration. This entails
creating the VPC and associated network functions and configuring them, deploying the services and then
configuring access through public interfaces and VPNs. Ansible playbooks already exist for many of these steps,
but some do not and will need to be written. However, this is not complex, as Code Snippet 1 below shows.

- name: create VPC
ecZ2 vpc net:

name: "{{ vpc name }}"

cidr block: "{{ vpc cidr }}"

region: "{{ region }}"

state: present

aws_access _key: "{{ aws_access key }}"
aws_secret key: "{{ aws_ secret key }}"

register: vpc

Code Snippet 1- Ansible VPC Example

Ansible uses the AWS API to create the VPC as configured, the user does not have to use the API themselves,
simplifying the approach significantly. Other systems and deployments are created and configured using similar
approaches to above. CloudForms allows for the creation and maintenance of a catalogue of Ansible playbooks
that will perform commonly required actions and can manage these in a centralised manner.

(-

Y

Y
Cloud
Provider Cloud
A Provider
B

Secure VPN

L Dashboard / loT Broker

Secure VPN

[TIUT
«—

A TR

AR TRIN]

7%

Smart
‘ Container

Port Authority Building

Figure 22 - Multi-cloud Pl Network Scenario

© ICONET, 2020 Page | 35

D2.21- ICONET PI Control and Management Platform - Final Version

Figure 22 shows the scenario from Figure 20 with a focus on the loT data streams. In this scenario the loT sensors
in smart containers will connect to a local network if it exists — in this case the one on the ship. This connection
is a public network, as all containers will connect to the same network. The network on the ship is maintained by
an edge device which captures the sensor data for initial pre-processing, analysis or curation. This data can be
forwarded via a private network through local connectivity (for example the port authority). This is a private
network as the edge devices will only communicate with port authority networks through prior arrangement.
The loT data is forwarded to cloud provider B, chosen for their competitive rates for loT brokerage. This is done
via a secure VPN and finally the data can be accessed and visualised by an application deployed in Cloud Provider
A as they have competitive rates for simple front-end application hosting. Both cloud provider networks are
joined by a VPN also. CloudForms manages each entity through its own independent interface, and each of the
4 networks were created and are managed by CloudForms (using Ansible) but are used as communication
pathways between cloud environments.

© ICONET, 2020 Page | 36

D2.21- ICONET PI Control and Management Platform - Final Version

7 PoClIntegration Environment Blueprint - Full Context

Optimisation Cluster

o p

\L \ 4 ¢ ¢ v v VPC \ 4 L.

Public Subnet ‘ ‘ Public Subnet ‘

N I

Private Subnet Private Subnet

5/
>
NAT Gateway

Internet Gateway

| i

~

> O <€A Deployment
S3 Storage Sagemaker)\
File Pl
tatasets Models | systemj Training Endpoint 5 Dmr
- A E
[3
A 2
3
ECS Fargate a
et 1/CD Pipelin
Task Definitions Container
External 9 X
Data .9 AnyLogic
> Routing M)
» .
Services
Routing Cluster
loT
VM
> Blockchain
Blockchain Shipping
Blockchain Cluster
Shipping VM)
> Service
Networking Cluster Machine Learning
VM
Encapsulation
VPN
1 Optimisation
Service

Elastic Load Balancers AWS
< Lambda
Routing ELB Networking ELB Blockchain ELB Blockchain ELB Anylogic ELB
<
[Encapsulation ELB] [Optimisation ELB] [Shipping ELB] [loT ELB]
¢ Pl Simulation

[API Gateway
Pl Service External
Consumers Pl Nodes

Figure 23 - PoC Blueprint

© ICONET, 2020

User

Page |37

D2.21-

ICONET PI Control and Management Platform - Final Version

Figure 23 captures the technical components and component relationships in the PoC Integration Environment
in the full context of versions one, two and three of this deliverable in a single diagram. All major technical assets
(some elements were left out for clarity of the diagram) and services are represented in Figure 23 but have also
been addressed and discussed in detail in the three documents. Figure 23 serves to show the “bigger picture” of
how all the technical approaches and systems come together to form the PoC Integration Platform.

D2.19 (Version one) discussed:

Based on the DoA, Defining Goals & Function of the PoC Environment

The merits of PaaS as a service
The approach for choosing a cloud vendor

The variables and constraints needing consideration for the choice of cloud vendor

Cloud vendor choice made & justifications for that choice

Initial PoC Environment creation steps

Potential Connectivity Scenarios for the PoC Environment

The outputs of that deliverable manifest in Figure 23 and this document by the choice of AWS as the cloud
vendor, the substantial use of PaaS systems in the PoC, the external connectivity points to developers, external
systems, external Pl Nodes, and simulation users. Furthermore, the initial goes as set out in section 3.1 of D2.19
were addressed successfully as shown in Table 1 mapping the goals from D2.19 to the achievements as seen in
D2.21.

Table 1: PoC Integration Platform Goals

PoC Integration Platform Goals (D2.19, 3.1, Table 2) Goals Addressed

1 | Support the research and development efforts in WP2 by | User access and secure connectivity
providing any tools, frameworks, network connectivity, | provided, security policies created, code
user access and laaS/PaaSs infrastructure as required. repositories created for source-controlled

development

2 | Provide an integration platform upon which Pl services can | All Pl Services were deployed, tested and
be developed, deployed and tested. redeployed with subsequent versions within

the PoC environment, with increasing use of
automation as the project progressed

3 | Support the interconnectivity between the PI services. | VPCs, subnets, routing tables and firewall
Ensure that all communication ports and protocols are | policies ensured that all Pl Services
supported and implemented as needed by the technical | communicated with each other and the
requirements of the project. simulation service in a controlled secure

environment. When required, specific
access was granted externally via load
balancers facilitating Living Lab partners
access, external Pl Node access, simulation
user access.

4 | Support the interconnection between the Pl simulation | Similar to above, the VPCs, subnets, routing
environment and the Pl services, loT elements, and | tables, firewalls, load balancers etc granted
Blockchain as necessary. connectivity to these systems in the same

means as the Pl Services

© ICONET, 2020

Page | 38

D2.21- ICONET PI Control and Management Platform - Final Version

5 | Provide integrated and controlled remote user access to | Remote access for developers was provided
PoC integration platform. via secure VPN to the VPC, console access via
the AWS web Ul, command line access via
the AWS CLI tool.

6 | The integration platform should be flexible and elastic | The project facilitated and carried rapid and
when responding to the technical demands of the project. | significant redesign based on the needs of
the project and all requirements from the PI
Service developers were met in a timely
manner

7 | The integration platform should always be available. The PoC Integration platform experienced
no outages or downtime during the course
of the project.

D2.20 (Version two) discussed:

e Restating the goals of the PoC Integration Environment

e The interdependencies of the Pl Architecture and the PoC Integration Environment

e Integration Strategies and practical approaches

e The main resource and services (such as compute and storage) that would support the Pl Services &
other services within the PoC environment.

e Deployment methods and approaches

e Reports on initial assets deployed

e Reports on pilot integrations

e Report on Simulation Service Deployment

e Pl Services Dataflow

The outputs of D2.20 can be identified in Figure 23 by noting the integrations and data flows across multiple Pl
Services, simulations, external actors, data sources and external systems. In addition, compute and storage
systems such as S3, Fargate, ECS and EC2 play a central role in the deployment Pl Services and other services.

D2.21 (Version three & this document) discusses:

e More complex integration structures such as
o Elastic Load Balancers
Static Addresses
Public Access to Pl Service APIs
AP| Gateways, authentication and security
Deployment pipelines
Machine Learning
= Data acquisition
= Training
= Model management
= APl Gateways & AWS Lambda
= Machine learning based APIs

O O O O O

The outputs of this document, D2.21, can be identified in Figure 23 by noting the deployment pipeline across all
ECS systems and deployed services, the load balancers that serve as public interfaces to Pl Services where legacy
systems, external Pl nods and testing and evaluation can take place, the API gateway that fronts these load
balancers for authentication purposes and their relationship to existing SDN structures such as public and private
subnets in the VPC and NAT and Internet Gateways. In addition the machine learning pipeline can be identified

© ICONET, 2020 Page | 39

D2.21- ICONET PI Control and Management Platform - Final Version

near the top of the diagram showing data acquisition, model training and storage and finally AWS lambda and
AP| Gateways to allow machine learning services to be available using PaaS.

© ICONET, 2020 Page | 40

D2.21- ICONET PI Control and Management Platform - Final Version

8 Conclusion

The research and technical implementations undertaken for these deliverables and tasks have successfully met
the current needs of the ICONET project. In addition, this document has begun to address the needs of future PI
engagements including anything from further research, to pilot Pl programs to full production level PI
engagements. The containerisation approach is considered vastly superior to other approaches for service
development due to the homogenous nature of development work and flexibility provided. Containerisation
allows for a reusable series of deployment requirements across all Pl Services. The Pl Services stack clearly aligns
with the current trend in microservices based architectures which allows the Pl Services to benefit from
orchestration technologies and emerging serverless compute approaches.

The use of PaaS as the supporting cloud and deployment frameworks in conjunction with containerisation and
microservices approaches matched well with the Pl Service stack and should be an approach that is followed for
future PI research efforts. By limiting containerised services to core Pl Service functionality this both offloads
non-functional requirements away from Pl Service developers, but also allows for a unified approach to non-
functional issues (security, deployment etc.). Given emerging trends in cloud technology, the ability for all
services to be centrally supported and integrated across multiple cloud vendors is critical.

The use of machine learning technologies is recognised to be an approach that will be extensively adopted in the
Pl and logistics domain given the huge benefits that could be derived from it. Strategies and technologies such
as robust data streams, cloud side pre-processing, the use of PaaS systems, service mesh, and CI/CD pipeline
integrations must be adopted to make efficient use of these technologies in harmony with existing technological
approaches.

The newest trend in cloud computing paradigms is to adopt a multi-cloud or hybrid cloud approach seeing
workloads spread across any number of private and public clouds across a number of technology providers. Given
the diverse array of actors, assets and systems in a Pl scenario it is likely the bleeding edge of the Pl will intersect
with the bleeding edge of cloud computing. It is critical to understand these trends now, adopt technologies and
practices early to integrate these two concepts to encourage Pl adoption at the greatest possible rate. Emerging
paradigms such as multi-cloud and fog computing will change how organisations approach their IT solutions, and
not only will the Pl adapt to these paradigms, but it will excel because of them.

The PoC Integration task and associated deliverables aimed to provide a strategy for collaborative research as
well as a technological approach to facilitate research and integration for Pl Services and other assets. The PoC
platform supported research in the Pl domain, aided in evolving the Pl reference architecture, development of
Pl services, supported deployment and integration of all Pl Services and simulation services and provided
practical approaches for the present as well as state of the art approaches for the future which will ensure the
Pl Services meet both functional and non-functional requirements.

© ICONET, 2020 Page | 41

D2.21- ICONET PI Control and Management Platform - Final Version

Annex | - Accessing the PoC Environment for Evaluation

Any authorised party outside the consortium who wishes to access the PoC integration environment hosted in
AWS can do so by making contact with ILS, the project coordinator, to arrange secure access via VPN or AWS
login credentials. Anyone accessing the PoC environment will need some dev-ops or cloud computing skills to
successfully navigate the assets, services and systems within as this is technical platform not designed for end
users.

The Anylogic Simulation service can be accessed from a browser at http://172.31.6.36/auth/login . Access
requires a login name and password which INV will provide and this interface does not require an IT, dev-ops or
cloud engineering background.

© ICONET, 2020 Page | 42

D2.21- ICONET PI Control and Management Platform - Final Version

Annex Il -PoC Integration Environment Screenshots

Services

Developer Tools
CodePipeline

» Source « CodeComn

Artifacts » CodeArtifact

v

» Build = CodeB

» Deploy * CodeDeploy

Getting started

Pipelines

Settings

v

Q Goto
) Feedback

aws Services v

Developer Tools » CodePipeline

Pipelines info

Q

Name

routing
iot-parser-api
iot-device-parser
iot-service-storage
iot-service-proto

shipment-service-api

shipment-service-
storage

shipment-service-proto

e database-di

Pipelines

Most recent execution

@© Succeeded
© Succeeded
@© Succeeded
© Succeeded
@© Succeeded
@© Succeeded
© Succeeded

© Succeeded

Latest source revisions

Image - sha256:e:
Source - 484447f: Added task definition files

Source - bdd6f77e: Optimization [atomic operations]
Source - 35cc78a8: Add dependencies from amazon
Source - 6aba2649: Updated proto package

Source - 960df78f: Adding timeout parameter
Source - 9f236dbf: Fixing metadata message format
Source - 33127d74: Fixing metadata message format

Source - 7dcc6e29: Fixing metadata message format

©

iconet-python-poetry-
image

© Succeeded

Source - ¢9628¢92: Update aggregation test

Source - 6b0aa8c: Initial commit

Iconet ¥

Last executed
1 month ago
2 months ago
6 months ago
2 months ago
2 months ago
15 days ago
28 days ago

24 days ago

Ireland ¥

29 days ago

6 months ago

Developer Tools
CodeCommit

w Source + CodeCommit
Getting started
Repositories
Approval rule templates

Artifact

» Artifacts « C

» Build » CodeB

» Deploy = Co

Pipeline + CodePipeline

v

» Settings

© ICONET, 2020

Developer Tools » CodeCommit

Repositories info

Q
Name

ICONET-CLMS-shipping

ICONET-ILS-Blockchain

Repositories

ICONET-NGS-shipment-service-api

ICONET-NGS-shipment-service-proto

ICONET-NGS-shipment-storage-

service

ICONET-NGS-database-driver

route-pipe

ICONET-CLMS-encapsulation

ICONET-NGS-database-model

ICONET-NGS-iot-parser-api

ICONET-NGS-iot-storage-service

Description

This repo contains the implementation of the
Shipment Service API.

This repository contains the ICONET Blockchain
component which is based on the Tendermint
DLT and the REST API for interacting with the
Blockchain component

This repo contains the implementation of the
Shipment Service REST API.

This repo contains the implementation of the
interaction between the Shipment Service APl
and the Shipment Storage Server.

Contains the implementation of the Storage
Service for the Shipment Service interaction. It
offers the API that the Shipment Service can use
to manages their informations: Shipments and
Data belonging to those shipments.

This repo contains the interconnecting layer
between all the system components and the
database.

This repo contains the implementation of the
Encapsulation Service API.

Contains all the classes representing the DB
collections' entries of the ICONET project

This repo contains the implementation of the

Tracker Parser API. It is a Tornado based REST

AP for parsing the messages coming from the
trackers.

This repo contains the implementation of the
Storage Service used by the Device Manager
component of the Iconet project. It offers the
API that the Device Manager can use to manage
its informations: Write TrackerData and retrieve

Last modified

1 day ago

5 days ago

15 days ago

24 days ago

28 days ago

29 days ago

1 month ago

2 months ago

2 months ago

2 months ago

2 months ago

v

Clone URL

HTTPS (3 SSH

HTTPS

HTTPS (P SSH

HTTPS (3 SSH

HTTPS (3 SSH

HTTPS

HTTPS SSH

HTTPS (3 SSH

HTTPS (3 SSH

HTTPS (3 SSH

HTTPS

(P HTTPS (GRC)
HTTPS (GRC)

(P HTTPS (GRC)

(P HTTPS (GRC)
HTTPS (GRC)

HTTPS (GRC)

HTTPS (GRC)
HTTPS (GRC)

(P HTTPS (GRC)

HTTPS (GRC)

HTTPS (GRC)

Page | 43

D2.21- ICONET PI Control and Management Platform - Final Version

aWs Services v

pport ¥

v Instances
Instances
Instance Types
Launch Templates
Spot Requests
Savings Plans
Reserved Instances
Dedicated Hosts
Scheduled Instances

Capacity Reservations

v Images

AMIs

<

Elastic Block Store
Volumes
Snapshots

Lifecycle Manager

¥ Network & Security
Security Groups
Elastic IPs
Placement Groups
Key Pairs
Network Interfaces
¥ Load Balancing

Load Balancers

Target Groups

<

Auto Scaling

Launch Configurations

EC2) Target groups

Target groups (16)
Q

Name Ao ARN Port v Protocol v Target... v
anylogic-grp (9 amn:aws:elasticloa 80 HTTP Instance
bea-lb (9 am:awscelasticload.. 7777 HTTP P
blockchain-sve (9 am:awscelasticload... 80 HTTP P
ecs-blocke-blockchain-sve (9 am:awscelasticload... 80 HTTP P

ec -lb a i 80 TP P
ecs-routin-routing-lb-test (9 arn:aws:elasticload... 80 TP P
encap-tgt (@ arn:aws:elasticload... 80 TCcP Instance
nginx (9 arn:aws:elasticload... 80 HTTP P
opt-tgt @ arn:aws:elasticload... 80 TCP Instance
routing-l13-public (3 arn:aws:elasticloa 80 HTTP P
routing-l13-tgt (3 arn:aws:elasticload... 80 HTTP 13
routing-pipe-2 (@ arn:aws:elasticload... 5000 HTTP P
routing-pipelined-tgt (@ arn:aws:elasticload... 5000 HTTP P
shipping-tgt (9 amn:aws:elasticload... 80 e Instance
tmp (9 amn:aws:elasticloa 80 HTTP Instance
tmp-target (9 amn:aws:elasticload... 80 HTTP Instance

Loadb... v

anylogic-lb1

blockchai...

networkin...

routing-lb

encapsula...

optimisati...

routing-l
U3-routin...
routing-pi...
routing-pi...

shipping-lb

routing-pi...

VvPCID
VpC-€1626987
Vpc-e1626987
Vpc-e1626987
Vpc-e1626987
Vpc-€1626987
Vpc-e1626987
Vpe-e1626987
Vpe-e1626987
Vpc-e1626987
Vpc-e1626987
Vpc-e1626987
Vpc-e1626987
Vpc-e1626987
Vpc-€1626987
Vpc-1626987

vpc-e1626987

¥ Instances
Instances
Instance Types
Launch Templates
Spot Requests
Savings Plans
Reserved Instances
Dedicated Hosts
Scheduled Instances

Capacity Reservations

v Images

AMIs

4

Elastic Block Store
Volumes
Snapshots

Lifecycle Manager

4

Network & Security
Security Groups
Elastic IPs
Placement Groups
Key Pairs

Network Interfaces

¥ Load Balancing
Load Balancers

Target Groups

4

Auto Scaling
Launch Configurations

Auto Scaling Groups

© ICONET, 2020

Creat ad Balancer

Q Filter by tags an

Name

@ anylogicbt
blockchain-Ib-pub
encapsulation-ib
13-routing-ib
networking-lb
optimisation
routing-lb
routing-I3-public
routing-pipelined
routing-pipelined-IP

»

Actions v

attributes or search by keyword

DNS name - state - VPCID
anylogic-b1-866382980.eu-... active Vpc-e1626987
blockchain-Ib-pub-84972495. active vpc-e1626987
encapsulation-lb-71c5aa610f... active Vpo-e1626987
internal-II3-routing-1b-169762... active Vpe-e1626987
networking-Ib-a73065bc2(58... active Vpe-e1626987
optimisation-764b95959492 active Vpe-e1626987
routing-Ib-6b4025ed7d5a19a... active Vpe-e1626987

routing-I3-public-103521713... active Vpe-e1626987

internal-routing-pipelined-17... active vpe-e1626987

internal-routing-pipelined-IP-... active Vpc-e1626987

Availability Zones

eu-west-1a, eu-west-1b
eu-west-1a, eu-west-1b.
eu-west-1a, eu-west-1c
eu-west-1a, eu-west-1c
eu-west-1a, eu-west-1c
eu-west-1c, eu-west-1a
eu-west-1a, eu-west-1c
eu-west-1a, eu-west-1b
eu-west-1a, eu-west-1c
eu-west-1a, eu-west-1c

eu-west-1a, eu-west-1c

shipping-ib shipping-Ib-4812eb69e88e7f... active Vvpe-e1626987
Load balancer: | anylogic-Ib1
Description ~ Listeners ~ Monitoring Integrated services = Tags
Basic Configuration
Name anylogic-Ib1
ARN arn:aws:elasticloadbalancing:eu-west-1:3314471787: b1
DNSname anylogic-lb1- eu-west-1.elb. om &
(A Record)
State active
Type application
Scheme internet-facing
IP address type ipvd
Edit IP address type
VPC vpc-e1626987 (2
Zones 1a56fa77 - eu-west-1a (7

IPv4 address: Assigned by AWS

173007 (2)

Type
application
application
network
application
network
network
network
application
application
application

network

Created At

July 8, 2020 at 4:15:09 PM

October 18, 2020 at 1:19:22
September 11, 2020 at 4:56:
September 18, 2020 at 4:32:
September 9, 2020 at 11:07.
September 11, 2020 at 4:58;
September 8, 2020 at 11:15;
October 14, 2020 at 12:37:5,

September 15, 2020 at 10:5.

September 15, 2020 at 11:0.

September 11, 2020 at 4:55:

o o9
1to110f 11
Monitoring
1

Page | 44

D2.21- ICONET PI Control and Management Platform - Final Version

aws AN
D New EC2 Experience —
Tllus what you think X (g Actions A O & O
EC2 Dashboard Q Filter by tags and attributes or search by keyword [~] 1to 14 0f 14
Events
Name Volume ID Size Volume Type ~ IOPS - Snapshot Created ~ Availability Zone ~ State - Alarm Status Attachment Informatic- Monitoring Volum
Tags
vol-Oeb6de9... 30 GiB 92 100 snap-0b44d47... September 17, 202 eu-west-1b @ inuse None Y 02e10b659a3c312a. @ Ok
Limits.
vol-00c06d8 3068 o2 100 SnNap-0b44d47... September2,2020... eu-west-1b @ inuse None Y -08bcd8Se1b7544e8 Ok
Instances vol-0487546. 8GiB 9p2 100 snap-043d097. July 30, 2020 at 10: eu-west-1b @ in-use None “‘ -080d7adbf9536997. @ Oki
Instances ol-00d73126... 50 GiB gp2 150 snap-0c27e52... July 29,2020 at 1:1 eu-west-1b @ inuse None Y 07d52b2ab61abal7 © Ok
Instance Types vokOceddte... 16 GiB o2 100 S$Nap-043d097... July7,2020at 7:57... eu-west-1b @ inuse None N -00208317a9a70ab0. @ Ok
Launch Templates vol0149d33... 8GiB ap2 100 snap-091b097... May7,2020at11:4... eu-west-1a @ inuse None % 037072268414093d © Ok
oot R . Anylogic OS Disk (Upgraded) vol-0056dde. 200 GiB gp2 600 snap-Oe63a2c March 10, 2020 at 3. eu-west-1a @ inuse None % -0M0c2ffdd22c2b3d @ Ok
pot Requests.
. vok01cd726... 16 GiB o2 100 snap-0c53dBe... January 15,2020at... eu-west-1b @ inuse None Y -0eb01516967665aa © Ok
Savings Plans
vol-01b47ca 8GiB op2 100 Snap-076641 January 14,2020 at... eu-west-1a @ inuse None Y -0779085(882b6222 © Ok
Reserved Instances
Anylogic OS Disk (Orignal) vo-0163d6ef... 16 GiB o2 100 snap-0c53dBe... November 25,2019... eu-west-1a @ avaiable None » © ok
D Hosts
edicated Hosts Vol-0bcdf75f... 8 GiB gp2 100 snap-0cS3dBe... November 25,2019... eu-west-1c @ inuse None Y i-04cB4bcBodSachSd © Ok
Scheduled Instances vol-0a8785e... 8GiB g2 100 snap-0c53dBe... November 25,2019... eu-west-1b @ inuse None % 1-079¢b9010ab1dc7. © ok
Capacity Reservations vol-06abb29. 8GiB gp2 100 snap-0c53d8e. November 25, 2019, eu-west-1a @ inuse None %% i-0453aabds1bg2ede. @ Ok
Images AnyLogicServerDisk 0l-0059389... 30GiB gp2 100 snap-0d317b8... October22,2019at.. eu-west-1b @ inuse None Y 1-0c32a43334b70eb8 © Ok
m EC2 Image Builder Actions v
Ownedbyme v (Filter by tags and attributes or search by keyword (2]
@ Name ~ AMI Name - AMIID Source ~ Owner ~ Visibility ~ Status ~ Creation Date ~ Platform ~ Root Device 1+ Virtualization ~
[] # VPN Image ami-0f03e7debecef9d45 331447178759/... 331447178759 Private available September 2, 2020 at 11:17:... Other Linux ebs hvm
Image: ami-0f03e7debecef9d45
Details Permissions Tags
AMIID ami-0f03e7debecefod45 AMIName VPN Image
Owner 331447178759 Source 331447178759/VPN Image
Status available State Reason -
Creation date September 2, 2020 at 11:17:46 AM UTC+1 Platform details Linux/UNIX
Architecture x86_64 Usage operation Runinstances
Image Type machine Virtualization type hvm
Description - Root Device Name /dev/sdal
Root Device Type ebs RAMdiskID -
KernelID - Product Codes marketplace: f2ew2wrz425a1jagnifd02ust
Block Devices /dev/sdal=snap-0b44d479bd3efffbb:30:true:gp2
Iconet ¥ d ¥ Support ¥
D IS taces (19 e e) s~ A
EC2 Dashboard Q 1 @
Events
. Name v Instance ID Instance state v Instance type ¥ Status check Alarm Status Availability zone ¥ Public IPv4 DNS v Public IPv4
ags
Limits test-working-sn2 i-0453aabd8 1b92eee ©stopped @QQ t2.micro - Noalarms + eu-west-1a - -
AnyLogic Server i-0fb0c2ffdd22c2b3d @Running QQ t2.2xlarge © 2/2 checks .. Noalarms + eu-west-1a - -
Instances
shipping-poc i-0779085f882be222a @Running QQ t2.micro © 2/2 checks .. Noalarms + eu-west-1a €c2-18-203-98-56.eu-... 18.203.985
Instances
encapsulation i-037072268d14093d8 @Running QQ t2.micro © 2/2 checks .. Noalarms + eu-west-1a €c2-3-248-249-187.eu... 3.248.249.1
Instance Types
o VPN Server 1 i-0c32a43334b70eb80 ©@Running QQ t2.small © 2/2 checks ... No alarms 4 eu-west-1b ec2-18-202-162-211.e... 18.202.162.
Launch Templates X X
test-working-sn1 i-079eb9010ab1dc87f ©stopped @QQ t2.micro - No alarms + eu-west-1b = =
Spot Requests
porie cloud-iot i-0eb01516967665aa2 @Ruming Q& t2.micro © 2/2 checks ... Noalarms + eu-west-1b €c2-54-171-159-149.e... 54.171.159.
Savings Plans § X
SimpleDeployments i-002d83f7a9a70ab07 ©@Running @Q t2.micro © 2/2 checks ... Noalarms + eu-west-1b ec2-176-34-220-166.e... 176.34.220.
Reserved Instances .
MachineLearningG4 i-07d52b2ab61aba17c ©stopped @AQ g4dn.xlarge - Noalarms + eu-west-1b €c2-63-33-180-7.eu-w... 63.33.180.7
Dedicated Hosts
MachineLearningG4_Blank i-080d7adbf95369972 Ostopped @QQ g4dn.xlarge - Noalarms + eu-west-1b - -
Scheduled Instances
. VPN Server 2 i-08bcd85e1b7544e8b ©@Running QQ t2.small © 2/2 checks ... Noalarms + eu-west-1b €c2-54-76-69-200.eu-... 54.76.69.20
Capacity Reservations
pacity Reservatt VPN Server 3 i-02e10b659a3c312ae @Running QQ t2.small © 2/2 checks .. Noalarms + eu-west-1b €c2-34-242-85-242.eu... 34.242.85.2
Images test-working-sn3 i-04c84bc8c45ach546 © stopped @Q t2.micro - Noalarms + eu-west-1c - -

© ICONET, 2020

Page | 45

D2.21- ICONET PI Control and Management Platform - Final Version

@ New VPC Experience
Tl us what you thnk

Security Groups (35) info

VPC Dashboard

Q 1 @
Filter by VPC:
‘

Q Selecta VPC Name v Security group ID v Securitygroupname v VPCID v Description v Owner v Inbound rulescount v Outba
v ;TJS;L PRIVATE - 59-003b20b04677c271d routin-4003 Vpc-e1626987 2020-09-05T18:09:43.... 331447178759 1 Permission entry 1 Perm
Your VPCs ITA_mysQL 59-0054729d0cb94371a ITA IP Group Vpc-e1626987 ITA IP Group - mysal 331447178759 1 Permission entry 2Perm
Subnets - 5g-00bfbe7b86b374672 testin-9546 Vpc-e1626987 2020-09-05T15:59:39.... 331447178759 2 Permission entries 1 Pern
Foute Tables o 5g-00f5233b9e5ca79b8 nginx--9685 Vpc-e1626987 2020-07-02T10:18:09.... 331447178759 1 Permission entry 1 Pern
- 59-0126d45¢3771c2b3a blocke-5086 Vpc-e1626987 2020-07-07T12:48:10.... 331447178759 1 Permission entry 1 Pern

Internet Gateways
= 59-02780312f25¢¢792d opt-security Vpc-e1626987 2020-02-03T11:58:03.... 331447178759 1 Permission entry 1 Pern

Egress Only Internet
Gateways VPN Server Specific 59-028380bc67e49add5 VPN_Access Vpc-e1626987 For VPN Server 331447178759 14 Permission entries 1 Pern
DHCP Options Sets - 59-022fd387d010870 GPUgrD Vpe-e1626987 launch-wizard-1 create... 331447178759 2 Permission entries 1 Pern
Elastic IPs » - 59-034db48981669¢7fb launch-wizard-1 Vpc-e1626987 launch-wizard-1 create... 331447178759 1 Permission entry 1 Pern
Managed Prefix Lists » = 59-0417da71eeb90557f networ-4140 Vpc-e1626987 2020-08-11T10:58:56.... 331447178759 2 Permission entries 1 Pern
Endpoints - sg-04c2b2da6d83128ac routin-5809 Vpc-e1626987 2020-09-08T10:45:48.... 331447178759 1 Permission entry 1 Pern
Endpoint Services - 59-0562¢41¢65497a499 bca7777 Vpc-e1626987 load-balancer-wizard-... 331447178759 2 Permission entries 1 pern

NAT Gateways

Allocate Elastic IP address

Elastic IP addresses (1/5)

Q L @

(-] Name a Allocated IPv4 add... ¥ Type v Allocation ID v Associated instance ID ¥ Private IP address v Association ID
AL 54.171.5.2 Public IP eipalloc-0b5260284e39fb33b - 172.31.17.22 eipassoc-0b01t
ML 63.33.180.7 Public IP eipalloc-048b6b0019fad7d82 i-07d52b2ab61aba17c [4 172.31.27.68 eipassoc-03b4(

VPN 1 18.202.162.211 Public IP eipalloc-0b2332a7f545c7905 i-0c32a43334b70eb80 [5 172.31.23.146 eipassoc-00d67
VPN2 54.76.69.200 Public IP eipalloc-0878b307482b56f0b i-08bcd85e1b7544e8b [172.31.23.57 eipassoc-0dbdé¢
VPN3 34.242.85.242 Public IP eipalloc-061aa7db8fa7a957b i-02e10b659a3c312ae [4 172.31.20.200 eipassoc-05eb(

E & @
18.202.162.211

Summary Tags

Summary

Allocated IPv4 address Type Allocation ID Association ID

18.202.162.211 Public IP @ eipalloc-0b2332a7f545¢7905 eipassoc-00d67df3a7df8a7ef

Scope Associated instance ID Private IP address Network interface ID

VPC i-0c32a43334b70eb80 [5 172.31.23.146 eni-009dddf19c4afbclee [F

Network interface owner account ID Public DNS NAT Gateway ID Address pool

331447178759 ec2-18-202-162-211.eu-west- - Amazon

1.compute.amazonaws.com

Create route table J.0 (1304

Q Filter by tags and attributes or search by keyword

Name ~ Route Table ID = p subnet iati Edge iati Main VPC ID ~ Owner
Working-NA... rtb-076b476623d3c1ac6 2 subnets - No vpc-€1626987 | MainVPC 331447178759
WorkingMai... rtb-92f3c1eb subnet-097d2941 - Yes vpc-e1626987 | MainVPC 331447178759

@ New VPC Experience m Aclional
Toll us what you think o ° o

VPC Dashboard Q Filter by tags and attributes or search by keyword 1to4of4
Fiter by VPC:
. Name - SubnetID - State - VPC - IPVACIDR - Available IPvé - IPV6 CIDR Availability Zone - Availability Zoi
Q Selecta VPC
b_public subnet-039dbaf281as6fa77 available vpc-e1626987 |MainVPC 172.31.48.024 248 - eu-west-1a euwl-azt
v ‘é':gl“’é‘- PRIVATE WorkingSubnet1 (Public) subnet-097d2941 available vpc-e1626987 | MainVPC 1723116020 4077 - eu-west-1b euwl-az2
Your VPCs WorkingSubnet2 (Private) subnet-59c5803f available vpc-e1626987 | MainVPC 172.31.0.0/20 4076 - eu-west-1a euwl-az1
Subnet: WorkingSubnet3 (Private) subnet-c197f9b available vpc-1626987 | MainVPC 172.31.32.0/20 4073 - eu-west-1c euw1-az3
ubnets

© ICONET, 2020 Page | 46

D2.21- ICONET PI Control and Management Platform - Final Version

Your VPCs (1/1) info

[Fitery <1 @

| VPC ID: vpc-e1626987 X | l Clear filters

Name v VPCID v State v 1Pv4 CIDR 1Pv6 CIDR IPv6 pool DHCP ¢
| MainVPC vpc-e1626987 © Available 172.31.0.0/16 - - dopt-7¢

- E =@

vpc-e1626987 / MainVPC

Details CIDRs Flow logs Tags

Details

VPCID State DNS hostnames DNS resolution

@ vpc-e1626987 @© Available Enabled Enabled

Tenancy DHCP options set Route table Network ACL

Default dopt-7c5a201a rtb-92f3c1eb / WorkingMainRoute acl-2f5ad756 / workingacl

Default VPC IPv4 CIDR IPv6 pool IPv6 CIDR

Yes 172.31.0.0/16 - -

Owner ID

331447178759

Task Definitions

Task definitions specify the container information for your application, such as how many containers are part of your task, what resources they will use, how tl

Create new Task Definition Create new revision -
Status: (ACTIVE) INACTIVE

Y Filter in this page

Task Definition Latest revision status
blockchain ACTIVE
encap_svc ACTIVE
iconet-opt ACTIVE
iconet-routing ACTIVE
113-routing-tsk ACTIVE
networking-tsk ACTIVE
routing-pipelined ACTIVE

© ICONET, 2020 Page | 47

D2.21- ICONET PI Control and Management Platform - Final Version

Clusters

An Amazon ECS cluster is a regional grouping of one or more container instances on which you can run task requests. Each account receives a default cluster the first time you use the Amazon ECS service. Clusters may contain more than one Amazon
EC2 instance type.

For more i ion, see the ECS .

Create Cluster Get Started

ago)

Y Filter in this page

Cluster name ~ CloudWatch monitoring Services ~ Running tasks ~ Pending tasks ~ Container instances ~
routing-Cl @ Container Insights 4 4 0 0
routing-pipelined @ Container Insights 1 1 0 0
blockchain @ Container Insights 1 1 0 0
encap-ci @ Container Insights 1 1 0 0
optimisation-ci @ Container Insights 1 1 0 0
networking-ci @ Container Insights 1 2 0 0

Amazon Container X ECR Repositories
Services
Repositories Create repository
Amazon ECS
1
Clusters Q @
Task definitions Ta Scan on Encryption
Repository name a URI Created at v 9 i
immutability push type
Amazon EKS
'24/20, 12:06:2!
iconet-blockchain 331447178759.dk 1 iconet-blockchai 06/24/20,120625 oicatied Disabled AES-256
Clusters ™
iconet-clms-encapsulation (3 3314471787590k 1 conet-ct i OU/29020.081733 biatieq Disabled AES-256
Amazon ECR 04/08/20, 02:20:11
e iconet-clms-shipping 331447178759.dkr.ecr.eu-west-1.amazonaws.com/iconet-clms-shipping /0820, 02: Disabled Disabled AES-256
positories ™
4/02/20, 02:08:1 "
iconet-networking-svc 331447178759.dkr.ecr.eu-west-1.amazonaws.com/iconet-networking-svc :M’ 02/20,020815 picabled Disabled AES-256
iconet-opt (9 331447178759 dkr.ecr.eu-west-1.amazonaws.com/iconet-opt ﬁ‘/ox/ 20,11:31:48 Disabled Disabled AES-256
4, 10:27:
iconet-router 331447178759.dkr.ecr.eu-west-1.amazonaws.com/iconet-router 04/02/20,1027:06 icatied Disabled AES-256
iconet-router-13 331447178759.dk 1 i u3 09/18/20,03:2255 picahieq Disabled AES-256
y . 78759,k 1 i i 574
iconet/ngs/api-manager/shipment 5514471787 u-west 04/28/20,07:57:05 [Enabled AES-256
service-api manager/shipment-service-api M
144’ .dkr.ecr.eu-\ -1 i i 4,), 06:21:4! .
iconet/ngs/iot-manager/iot-parser-api 351447178759 dkr.ecr.eu-west 04/29/20,0621:45 1y bieq Enabled AES-256
parser-api M
iconet/ngs/python-poetry 331447178759.dk 1 i -poetry ::1’25/20' 09:59:39 Disabled Enabled AES-256
759.dk 1 " rces/h 204
iconet/ngs/storage-services/iot-service :::;7178 / 04/29/20.12:20:49 picapeq Enabled AES-256
iconet/ngs/storage-services/shipment- 331447178759.dki 1 i 04/28/20, 02:26:12 Disabled Enabled AES-256

service services/shipment-service

© ICONET, 2020 Page | 48

D2.21- ICONET PI Control and Management Platform - Final Version

AWS Cost Management > Cost Explorer

m Recent reports v © New report

Last 12 Months v Monthly v © lii: Stack v
Group by: Service Linked Account Region Instance Type Resource Cost Category ¥ Tag ¥ More ¥

Costs ($ in thousands)
1.4

1.2
1.0
0.8
* B B R R ERE
0.4
0.2 -
0.0 -

Oct 2019 Nov 2019 Dec2019 Jan2020 Feb2020 Mar2020 Apr2020 May2020 Jun2020 Jul2020 Aug 2020 Sep 2020

Bl EU-BoxUsage:t2.2xlarge [l No Usage Type*** [l EU-NatGateway-Hours EU-BoxUsage:t2.small

Bl EU-BoxUsage:g4dn.xlarge [l Others

Identity and Access P Acd user

Management (IAM)
Q Find users by username or access key
Dashboard
+ Access management User name ~ Groups
Groups alex.papageorgiou@inlecomsystems.com Inlecom
Users antonis CLMS
Roles . . .
claudio.salvadori@ngs-sensors.it NGS
Policies
dcipres@itainnova.es ITAINNOVA
Identity providers
. faisalgh@ie.ibm.com Irkin
Account settings
garanco IBM
v Access reports
Access analyzer kgmf IBM
Archive rules kostas VLTN
Analyzers o.panagou@climsuk.com CLMS

© ICONET, 2020 Page [49

D2.21- ICONET PI Control and Management Platform - Final Version

18.202.162.211

VPN Status Overview

Access Server
V275 The server is currently ON

(O stop the Server
STATUS

CONFIGURATION Active Configuration

Cluster

Cense Access Server version: 275
Lsisetings Server Name: 18.202.162.21n
Network Settings

VPN Settings License Status: 2 devices

Advanced VPN
Web Server Current Active Users: 1

CWS Settings

) Authenticate users with: local
Failover

Accepting VPN client connections on IP address: eth0:172.31.23.146

USER MANAGEMENT
Port for VPN client connections: tcp/443, udp/1194

AUTHENTICATION
oSl Layer: 3 (routing/NAT)
Clients access private subnets using: NAT

Eq) Log Node: openvpnas2

© 4 172.31.6.36, Search

Login Sign up

Password

[J Remember me

Forgot password?

By logging into account, you agree to AnyLogic Cloud's
Terms of use and Privacy policy

© ICONET, 2020 Page | 50

D2.21- ICONET PI Control and Management Platform - Final Version

Bibliography

[1] “nxtPort - About,” [Online]. Available: https://www.nxtport.com/about.

[2] “What is Amazon VPC,” [Online]. Available: https://docs.aws.amazon.com/vpc/latest/userguide/what-is-
amazon-vpc.html.

[3] “Internetwork Traffic Privacy in Amazon VPC,” [Online]. Available:
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html.
[4] “What is Amazon EC2?,” [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.

© ICONET, 2020 Page | 51

