

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 769119.

New ICT infrastructure and reference architecture to support Operations in
future PI Logistics NETworks

D2.21 ICONET PI PoC Integration Platform – Final
Version

Document Summary Information

Grant Agreement No 769119 Acronym ICONET

Full Title New ICT infrastructure and reference architecture to support Operations in future PI
Logistics NETworks

Start Date 01/09/2018 Duration 30 months

Project URL https://www.iconetproject.eu/

Deliverable D2.21 ICONET PI PoC Integration Platform – Final Version

Work Package WP2

Contractual due date M26 (AMD) Actual submission date M26

Nature Other Dissemination Level Public

Lead Beneficiary IBM

Responsible Author Kieran Flynn (IBM)

Contributions from John Farren (IBM), CLMS, NGS

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 2

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the ICONET consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the ICONET Consortium nor any of its members, their officers, employees or agents shall be responsible
or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the ICONET Consortium nor any of its members,
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage
caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© ICONET Consortium, 2018-2021. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others has been
made through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 3

Table of Contents

1 Executive Summary ... 7

2 Introduction .. 8

2.1 Deliverable Overview .. 8

2.2 Goals of the PoC Integration Environment Task & Deliverable ... 8

2.3 Summary of Version 2 (D2.20) and Overview of this Deliverable ... 8

2.4 Leveraging Platform-as-a-Service .. 9

3 Integration Strategies & Approaches ... 11

3.1 Service Discovery .. 11

3.2 Service Mesh ... 12

3.3 External Integration & Access Scenarios .. 13
3.3.1 Simulation Access (A) .. 14
3.3.2 PI Service Access (B) .. 15
3.3.3 Developer Access (C) .. 16
3.3.4 Data Acquisition (D) .. 16
3.3.5 Node-to-Node Communication & Integration with Legacy Systems .. 18

4 Deployment Strategies, Methodologies and Procedures .. 19

4.1 Pipelines ... 19

4.2 Recommended Pipelined Testing Strategies .. 21
4.2.1 Unit Tests .. 21
4.2.2 API Tests ... 21
4.2.3 Integration Tests ... 21
4.2.4 Performance Tests .. 21

4.3 Security Audit ... 21

4.4 Deployments ... 23

5 Machine Learning Deployments ... 26

5.1 Requirements for new Machine Learning Deployment .. 26

5.2 Microservices Approach .. 27

5.3 Model Training as a Service ... 27

5.4 Machine Learning as a Service ... 28

6 Future Trends in PI Service Deployment Models ... 30

6.1 Challenges for Multi-Cloud PI Services ... 30

6.2 A Centralised Multi-Cloud Management System ... 32
6.2.1 Public & Private Cloud APIs and CLIs .. 32
6.2.2 Redhat Ansible .. 32
6.2.3 Redhat Cloudforms ... 33
6.2.4 Multi/Hybrid Cloud Networks ... 34
6.2.5 Combining SDN, Ansible, CloudForms for a Multi-cloud PI Scenario .. 35

7 PoC Integration Environment Blueprint – Full Context .. 37

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 4

8 Conclusion ... 41

Annex I – Accessing the PoC Environment for Evaluation .. 42

Annex II –PoC Integration Environment Screenshots ... 43

List of Figures
Figure 1 - PaaS, SaaS & IaaS .. 9

Figure 2 - AWS Cloud Map Namespaces ... 11

Figure 3 - LL2 Routing Service DNS Entry .. 12

Figure 4 - Service Mesh Flexible Routing ... 13

Figure 5 - External Integrations ... 14

Figure 6 - VPC links to Service Load Balancers .. 16

Figure 7 - Living Lab Input Streams ... 17

Figure 8 - Data Stream Monitoring ... 17

Figure 9 - Living Lab Data Delivery .. 18

Figure 10 - CI/CD Pipeline .. 19

Figure 11 - Routing Pipeline .. 20

Figure 12 - Vulnerability Notification .. 22

Figure 13 - Vulnerability Report .. 22

Figure 14 - CVE Information .. 23

Figure 15 - Deployment Group .. 24

Figure 16 - AWS Beanstalk Configuration ... 25

Figure 17 - Sagemaker training job in progress ... 27

Figure 18 - Saved Model .. 28

Figure 19 - Machine Learning Endpoint - PaaS Powered .. 28

Figure 20 - Multi Cloud PI Example ... 31

Figure 21 - Redhat Cloudforms ... 33

Figure 22 - Multi-cloud PI Network Scenario .. 35

Figure 23 - PoC Blueprint .. 37

List of Tables
Table 1: PoC Integration Platform Goals ... 38

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 5

Glossary of terms and abbreviations used

Abbreviation / Term Description

API Application Program Interface

AS Autonomous System

AWS Amazon Web Services

DBaaS Database as a Service

Dev-ops Development and Operations

DNS Domain Name System

DoA Description of Action

DoW Description of Work

EC2 Elastic Compute 2 {Amazon Service}

ELK Elasticsearch Logstash Kibana

ESB Enterprise Service Bus

GA Grant Agreement

GUI Graphical User Interface

IaaS Infrastructure as a Service

IoT Internet of Things

LAN Local Area Network

LL Living Lab

NFV Network Function Virtualisation

NOLI New Open Logistics Interconnection

OLI Open Logistics Interconnection

OSI Open Systems Interconnection

P&G Proctor & Gamble

PaaS Platform as a Service

PI Physical Internet

PoA Port of Antwerp

PoC Proof of Concept

QoS Quality of Service

R&D Research & Development

RAM Random Access Memory

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 6

RON Resilient Overlay Node

SB StockBooking

SCN Scenario

SDN Software Defined Networking

SLA Service Level Agreement

SoTA State of the Art

T&L Transport & Logistics

TCP/IP Transmission Control Protocol/Internet Protocol

vCPU Virtual Central Processing Unit

VLAN Virtual Local Area Network

VXLAN Virtual Extensible Local Area Network

WP Work Package

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 7

1 Executive Summary
IBM addressed the majority of the goals for the PoC Integration during work documented in Deliverable D2.20.
This involved the creation and configuration of the virtual networks, infrastructure, deployment of PI Services
and both service-to-service integration and service-to-simulation integration. In this document IBM has
furthered the achievements of D2.20 by addressing the remaining goals and then enhancing the flexibility,
security and robustness of the PI Service networks, communication, node-to-node communication and PI Service
deployments by ensuring they are cost effective and valid in real world scenarios. The defined approach allows
PI Service developers to focus on PI related functionality for logistics operations and offloads non-functional
requirements (security, config etc.) to the PaaS services and dev-ops personnel. The use of PaaS systems allowed
IBM to extend the scope of work beyond the DoA requirements and ensure the PoC Integration Environment
and the PI Services residing within adopted real world dev-ops based production strategies and technologies to
ensure PI Service deployments would be instant, automated, secure, robust etc.

IBM identified machine learning based PI Services as having a unique set of challenges and requirements and
also likely to play an increasingly large role in the PI Service suite. Strategies and technologies were adapted to
address the needs of ML Services while ensuring they were compatible with the existing frameworks supporting
standard PI Services. Strategies around data acquisition and quality, ensuring machine learning based services
are recent and up to date, that new models are validated before deployed and paradigms that see analytics
outside the cloud, at the edge of PI networks.

IBM identified key emerging trends in cloud technology and deployments that are likely to both mirror trends in
PI Service deployments but also impact them too. IBM researched leading technologies striving to address these
trends and applied them to the existing PoC environment created in Version 2, while expanding beyond that to
a likely future PI scenario that relies on multiple cloud vendors in combination with local, legacy and private cloud
and software technologies used by logistics organisations. These new concepts of multi-cloud and hybrid-cloud
will expand the reach of the cloud beyond the datacentre and out to edge and low power devices in the fog. As
IoT becomes more prevalent in the transport and logistics sector, the ability for the PI to leverage these new
technologies while adapting to future trends is critical and the research in this document lays out
recommendations to take advantage of new cloud and fog computing trends. This allows for PI Services to be
deployed and managed in a distributed yet orchestrated manner across heterogenous device types. All of which
looks to the future and aids in increasing the adoption potential, and subsequently increasing the future
disruptive potential, of PI Services.

This deliverable ends with a visualised blueprint containing all major components, services, systems and ICONET
technical assets that were created, configured, deployed and developed as part of all three PoC Integration
Platform deliverables. This ties together the work across all three documents and presents the work in a unified
manner.

The work done and documented in this deliverable and the previous deliverable versions show that the PoC
Integration Environment successfully met the requirements as laid out by the DoA, successfully met the
requirements of the ICONET WP2 and Living Lab participants, and in fact went beyond the initial DoA to adapt to
future requirements such as security, integration and modern deployments. It shows that a design methodology
was adopted to ensure that the cloud and edge computing paradigm requirements of the future were forefront
in design considerations.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 8

2 Introduction
This deliverable describes the methodology, design decisions and work done under Task 2.7 PoC Integration
Platform (previously known as Control and Management Platform). The PoC Integration Platform task and
associated work has two main goals. The first is to drive the integration of these assets across a number of
scenarios. The second is to support and facilitate the development and deployment of PI Services and other
technical assets required to further research in the PI domain. The substantive work towards these goals were
achieved and described in D.20, the intermediate version of this deliverable. The research and effort for this
deliverable focused on how the approaches already taken were refined and improved upon and how they can
be applied and adapted for the PI vision with regards to current and emerging technical trends.

2.1 Deliverable Overview
• Executive Summary – An overview of this document’s contents
• Introduction – Introducing the context of this document to the previous version and the DoA

requirements
• Integration Strategies & Approaches – Discussing the different connectivity scenarios and approaches

as they were applied to the PoC integration platform and PI Nodes
• Deployment – Discussing the technologies and approaches used for a modern, production level strategy

deployment framework
• Machine Learning Deployments – Discussing the unique challenges and requirements of machine

learning based PI Services and the approaches used to address them and combine them with existing PI
Services management frameworks.

• Future Trends in PI Service Deployment Models – Discussing how emerging trends in cloud deployments
will apply to the PI in the near future, and how the PoC Integration created for ICONET is adapted for
modern hybrid/multi cloud environments of the future, discussing specific technologies and approaches.

• Conclusion – Overview of work and lessons learned

2.2 Goals of the PoC Integration Environment Task & Deliverable
As discussed in Version 1 and Version 2 of this deliverable, the goals of the PoC Integration Platform are to
provide a flexible, cloud enabled digital workbench which will facilitate the technical research actions in the
project. The platform provides a secure enclave where PI Services can be deployed, developed, tested and
integrated. As the development moves to the final stages, the focus shifts more to integration actions and
ensuring that the living lab scenarios are digitally represented within the PoC environment. This spans from
ensuring access to the relevant datasets to multiple deployments of single services as each has been configured
for a particular scenario.

With these core goals met, IBM elected to expand the scope of the requirements and has investigated the
potential usage paradigms from a cloud and deployment perspective that will likely exist by the time the PI
becomes a global reality. Deployment paradigms based on hybrid cloud, multi cloud, edge and fog computing
were considered within the PI context to provide a roadmap to potential real-world implementations.

2.3 Summary of Version 2 (D2.20) and Overview of this Deliverable
The intermediate (2nd) version of this deliverable (D2.20) discussed in detail the following topics

• The Integration Environment Architecture
• Dataflow and interconnectivity scenarios for the PI Services
• The goals and objectives of the PoC Environment

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 9

• The Infrastructure and Network Topology of the PoC Environment along with the deployment and
configuration of compute and storage systems

• The strategies, tools and systems used to support the simulation systems
• PI Services Deployment & Integrations

The work undertaken for deliverable D2.20 addressed much of the goals and requirements of the associated
tasks. The approach taken for this deliverable was to enhance the existing infrastructure and frameworks in
terms of features – both functional and non-functional and to expand the scope of the research in a means which
would further the PI. This was done by integrating dev-ops strategies and approaches to PI Service deployment,
providing specific technological approaches for machine learning based PI Services and by addressing secure
connectivity from a cloud engineering perspective and allowing PI Service developers to focus on core PI Service
functionality. In addition, future trends in cloud service deployments were researched and emerging trends were
applied to known PI scenarios. Emerging technologies addressing these trends were evaluated in respect of the
existing PoC environment and recommendations for future PI networks were made.

2.4 Leveraging Platform-as-a-Service
Platform-as-a-Service (PaaS) is specifically addressed in the ICONET DoW as the preferred approach for engaging
cloud services in the ICONET project. As shown in Figure 1, there are three major paradigms – SaaS (Software-
as-a-Service), PaaS (Platform-as-a-Service) and IaaS (Infrastructure-as-a-Service). SaaS is a user facing model,
example of which are gmail, slack, google docs etc. PaaS is used primarily by software developers or dev-ops to
enhance or support the application they wish to present to users. IaaS is primarily used by administrators and is
the underlying compute and similar resources that support the platform and applications above, which is
ultimately powered by the actual bare metal hardware of servers, switches, hard disks etc.

Figure 1 - PaaS, SaaS & IaaS

There are many different systems that can fall under the PaaS umbrella. These could be computed or similar
systems to support applications running in the cloud such as GCE (Google Cloud Engine), Kubernetes, Red
Hat Openshift or AWS Fargate but can also encompass non-functional frameworks such as security systems,
firewalls, load balancers, SDN (Software Defined Networking). Anything that a software developer or dev-
ops engineer can engage as a pre-existing service without having to develop, install or construct themselves
can be considered a PaaS service.

The benefits of PaaS to ICONET, and why it was specified in the DoW as the approach to take, is that less
time and effort needs to be spent on developing and building non-functional systems. The bulk of the effort

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 10

can be instead focussed on the core task at hand – namely the research and development of the PI Services
and systems and the integration of those systems in a manner to address the Living Labs requirements. In
this project Amazon Web Services (AWS) was chosen as the cloud vendor (in a selection process that also
included Google Cloud Engine and IBM Cloud as candidates). AWS was chosen as it had a particularly rich
catalogue of PaaS options, some specifically identified as useful for ICONET such as Lambda and the API
gateway. ICONET also engaged the use of Virtual Private Clouds, Software Defined Network Infrastructure,
Elastic IP Addresses, Elastic Load balancers, Elastic Container Registries, Elastic Container Services, Identity
and Access Management, Deployment Pipelines and more services beyond. All of these services have
commercial or open source alternatives, but a significant amount of time and effort was saved by choosing
PaaS alternatives, and at a very low financial cost. This allowed ICONET to hit the ground running so to speak
in terms of focusing efforts immediately and directly at the core high value development and research
objectives of the project.

IBM has taken initial steps to ensure the viability of the PI Services in alternative cloud models. This is
discussed in more detail in the Future Trends in PI Service Deployment Models section.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 11

3 Integration Strategies & Approaches
In version 2 of this deliverable the pilot integration of the optimisation service and the simulation service were
discussed. The core mechanic of the integration is the ability for the Anylogic simulation service to make REST
API calls to the optimisation service.

3.1 Service Discovery
At this stage of ICONET, all services and associated APIs are now complete and published to the ECR (Elastic
Container Registry) where multiple versions and iterations of each service are stored as docker image templates.
Each image has been deployed and a number of services have been deployed multiple times to allow the
integration and testing across various living lab scenarios. In addition, services are no longer deployed as isolated
entities, as WP2 explores and configures the interdependencies of certain services on other services. For
example, the routing service will make requests to the networking service and the shipping service makes
requests to almost all other services. As individual services are redeployed (after an update or a bugfix) their
local IP address may change. The results of this new stage of development and integration is a larger and ever-
changing number of services, bound to changing IP addresses with different purposes, integrations and
configurations. It is impractical to manage the publication and communication of these variations manually and
in a real word environment this process needs to be managed programmatically. Therefore, for the PoC
environment, Service Discovery is enabled for all services. Service Discovery is facilitated by DNS (Domain Name
Servers) and configured by an internal AWS service called Cloud Map.

Figure 2 - AWS Cloud Map Namespaces

As shown in Figure 2, Cloud Map allows for the creation of namespaces and service names. A namespace is simply
a designated collection of entries under a common category. In WP2 there are five namespaces, one for each
living lab and an additional namespace for more broad integration and testing deployments. Within each
namespace any number of service names are defined and then associated with a given service. For example, the
namespace for Living Lab 2 has a service within it for routing simply called “routing”. This service is associated
with the actual deployed routing service which is specifically deployed for Living Lab 2 which is labelled as “ll2-
routing”. When the developers of another application wish to interact with this specific service, they need only
point the service at the “routing.ll2” endpoint and the DNS servers managed by AWS will point requests at the
IP address of the “ll2-routing” service.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 12

Figure 3 - LL2 Routing Service DNS Entry

This process only works however if the developers already know the endpoint and know what that specific
function the service at that endpoint has or does. In order to provide a programmatical way to acquire this
information it is possible to associate any number of “tags” to a given endpoint. The tags can describe relevant
information about the service and can include, but are not limited to:

• Port number the service is listening on
• Version number of the service
• Living Lab the service is operating for
• Dataset the service is using.

The tags are managed by Cloud Map and a developer can access these tags as well as request full listings of all
namespaces and all services within specific namespaces by making API requests against the Cloud Map service
itself. While Cloud Map is a proprietary service offered by AWS all major cloud vendors will have similar systems
for managing Service Discovery or indeed 3rd party implementation can be used. Having developers tailor each
service to be able to interact with each particular implementation is not practical so it is desirable for a common
interface to be designed. In the case of the ICONET PoC, a simple API service can be developed that relays the
information from Cloud Map to the service. This still needs to be updated to match the given deployment
scenario, but it is a single point of configuration change, as opposed to multiple points of change that would be
needed without the API relay.

3.2 Service Mesh
The next evolution of Service Discovery is the Service Mesh. This is a concept that allows developers and
administrators to see and understand the relationship between all services and view them as a single entity in
terms of logs, metrics, connectivity, troubleshooting etc. Of particular relevance to the ICONET project is the
ability to divide requests to a single service into multiple lanes and send those lanes to specific service instances.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 13

Figure 4 - Service Mesh Flexible Routing

In Figure 4 we see an example. In this scenario a warehouse management software system is using a machine
learning powered analytics service to help optimize operations within the warehouse. Data regarding the
warehouse operations is stored by the management software and is used to train new machine learning models
based on recent activity ensuring the analytics and predictions are up to date and as accurate as possible. New
models are deployed on a regular schedule. The logistics application then makes requests directly to the analytics
service. However, when a new model is ready to be deployed it is not good practice to push it to a live deployment
without first undergoing a verification phase. The use of a service mesh allows a single endpoint proxy that the
logistics application will interface with. The application is not aware of nor need it be aware of any changes that
occur behind the proxy. The proxy is configured to route a percentage of traffic to the new model where it can
be verified while the majority of traffic is routed to the current model. Once confirmation is received the new
model is performing in line with the old model, the new model can be configured to accept 100% of the traffic
with no interruption to service.

In the ICONET PoC AWS provides a mesh service known as App Mesh as it allows full integration with existing
AWS services. All major cloud vendors offer comparable services and in case of an on-prem or self-managed
cloud deployments and these approaches can be easily replicated across any vendor or using open source private
cloud approaches.

3.3 External Integration & Access Scenarios
The ICONET PoC Environment has three major external integration points:

• Data acquisition from non-PI legacy logistics systems (such as a warehouse activity database)
• PI Service access and use by non-PI logistics systems (such as warehouse management software)
• Simulation access for interested parties to view, use and evaluate simulations.

In addition, PI Service developers access the PI services and simulation services via the secure VPN server. In
Figure 5 below we can see a visual representation of these integration points.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 14

• Point A (top left) represents Anylogic users accessing the ICONET PoC environment. This is unique to the
ICONET PoC and allows industry stakeholders to access, use and trial the simulations that utilize the PI
Services and demonstrate the KPIs against which they will be evaluated.

• Point B (middle left) represents a legacy logistics service utilizing and communicating with a PI Service
• Point C (middle right) represents an ICONET WP2 PI Service developer accessing the PoC environment

via secure VPN
• Point D (bottom left) represents a legacy logistics system passing info and datasets to datastores used

by the PI Services

These 4 scenarios are discussed in more detail in the following sections.

Figure 5 - External Integrations

3.3.1 Simulation Access (A)

The simulation service is deployed on a high resource virtual machine running Ubuntu Linux. The simulation
service is actually comprised of a large number of distinct microservices, each communicating with each other.
The internal connectivity requirements have been discussed in Version 2 of this deliverable and can be
summarised as simply requiring the ability to access the various PI Services that are deployed in the PoC.
However, in addition to this there are two further connectivity scenarios that are relevant in the final stages of

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 15

the project. The Anylogic Simulation allows for users to create (or alter) simulations on the client on a local
machine or laptop and then push these new simulation scenarios to the cloud. Users can then use the Anylogic
user interface to observe the results of the simulations as they run. Initial requirements were that Itainnova had
the ability to do these tasks as they are the core simulation model designers and simulation experts of the project.
They did this by connecting to the secure VPN (as discussed in Version 2). However, at this stage ICONET looks
to make these offerings available to a wider audience. However, allowing external users to connect via the VPN
is neither practical or secure as it is desirable to prevent public access to the back-end services and systems. To
allow users to access the Anylogic systems an Internet facing load balancer is configured. This is an ELB (Elastic
Load Balancer) that is software-based load balancer available from AWS. This was configured as an Application
Load Balancer which means traffic can be filtered or blocked based on the traffic type (HTTP, HTTPS, SSH, etc.).
ELB is a distributed system backed by AWS, so it has resistance to some common attacks and also distributes
connectivity across multiple geographical zones. This means that in the event of a catastrophic failure at a specific
datacentre, the service will remain live and available. The ELB provides a static public address that users can use
to connect to the Anylogic UI. Anylogic provides its own user management system so there is no need to
configure authentication, users, passwords, access control lists etc. The load balancer ensures that requests
made via HTTP/S are forwarded to the Anylogic services, and all other requests are denied as intrusions. The load
balancer also performs period health checks against the Anylogic service, a simple request to ensure the service
is still responsive. For the PoC a failed health check will generate a notification to the administrator but for
production level environments automated mitigating action can be configured.

3.3.2 PI Service Access (B)

Although this is a research project, it is good design practise to consider security and data protection at the outset
of a development process. All the PI Services are developed in a microservices ecosystem where each service is
supplied as a docker image. Each image has implemented the core functionality of that service and has not
implemented any schema’s related to networking, security or data protection. There are two reasons for this.
The first is that this allows developers to focus on the core solution they are building and doesn’t require
expertise in other areas or time spent developing in other areas. The second is that by ensuring only the core
functionality is addressed the PI Services are universally adaptable to an external solution that address the non-
functional requirements.

Focussing on security and authorisation, we can see in Figure 5 above that external systems will access the PI
services through an API gateway. In the case of the ICONET PoC the API gateway is a service provided by AWS
but there are many off the shelf tools that can be customised. The API gateway is essentially the “first point of
contact” with an API from external systems. The API Gateway resides in its own private network, which is public
internet facing, and appropriately firewalled and protected for this reason. The API gateway accepts incoming
requests and based on the specific parameters is routed through the VPC link to the front facing load balancer
of a given PI Service. The VPC link is a dedicated network route that connects the private VPC where PI Services
reside to the public facing VPC where the API Gateway is but can only be used by the API Gateway itself. Figure
6 shows some of the VPC links used in the ICONET PoC and the Routing VPC Link points at the Routing Load
balancer.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 16

Figure 6 - VPC links to Service Load Balancers

There are many possible actions the API gateway can perform before but the main focus in this implementation
is that the API gateway is configured with an authoriser. The authoriser can be configured to work with existing
identity management systems to allow only requests that contain authorised tokens and secret keys to access a
specific PI Service. This allows authorisation and access to all PI Services to be managed in a centralised manner
while offloading this responsibility away from the PI Service developers.

3.3.3 Developer Access (C)

This integration point is for development and administrator access only. By design only interfaces that require
external access are made accessible on public networks. There are a number of additional interfaces and
components that are in the PoC environment that are not accessible publicly for security reasons. To allow the
PI Services developers access for deployment, test, verification etc. a VPN (Virtual Private Network) service was
configured. This allows developers to access the internal networks of the PoC environment from their local laptop
or workstation as if the laptop was actually part of the PoC environment network. It does so in a highly secure
manner ensuring no unwanted access can occur. This scenario is discussed in more detail in the intermediate
version of this deliverable (D2.20).

3.3.4 Data Acquisition (D)

One of the core drivers of the PI Services in ICONET is the data provided by the Living Labs. This is reflective of a
real-world implementation of the PI and PI Services scenario. The PI Services themselves provide abstraction,
common protocols and standards, analysis and prediction among other functions, but they are all powered by
the data provided by logistics organisations. This data can be day-to-day operational data such as the exchanging
of orders or it can be large scale data for analytics processing, such as a month’s worth of data related to late
deliveries. The daily operations of data exchange are handled by the Logistics Web Service and the Shipping
Service, but large-scale datasets (or data streams) for analytics need a dedicated consumption strategy.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 17

Figure 7 - Living Lab Input Streams

There are a large number of possible strategies for large scale data consumption, but many are based on similar
approaches. As shown in Figure 7, within the ICONET PoC a data stream was created for each Living Lab. A data
stream is a dedicated API endpoint where data can be submitted via API requests. Data is forwarded to the data
stream by an agent which is installed and run at the data source, making API requests to the stream. The agent
is simple and light weight and usually works by simply capturing log files as they are generated. Each stream has
some configuration options and allows for monitoring of the incoming data to ensure the stream is active and
functional. This means that each Living Lab or real-world data source can be monitored independently with
regards frequency of data and is an early warning mechanism if data streams fail. Figure 8 below shows the
monitoring dashboard for the Living Lab 1 data stream.

Figure 8 - Data Stream Monitoring

The data stream passes the data to a delivery stream. This is essentially a dedicated agent that consumes data
coming out of the stream, processes it and sends it to its final destination. The delivery stream has the ability to
convert the data into a common format, encrypt it and save it in a dedicated storage slot for this data steam.
Each Living Lab has a dedicated data stream, delivery stream and storage space. Figure 9 shows the delivery
streams for each Living Lab in the management console and Figure 5 (Point D, bottom left) shows the data
ingestion point and the components discussed here. In the case of the ICONET PoC AWS Firehouse and S3

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 18

services were used for this. These systems are based on industry standards used in other major tools such as ELK
(Elasticsearch Logstash Kibana) and the strategies employed can be reused in these tools if needed.

Figure 9 - Living Lab Data Delivery

3.3.5 Node-to-Node Communication & Integration with Legacy Systems

Node-to-Node communication is a critical and key element to the PI concept. In the above scenarios, section PI
Service Access (B) discusses the manner in which legacy systems will communicate and access PI Services. The
same technologies, approaches and policies will govern how two PI Nodes will communicate. The Shipping PI
Service serves as the interface for PI Node to another node, and therefore two Shipping services will exchange
information about PI Orders across API gateways. As before, the API gateway will manage the implementation
of the authorisation and access, security tokens etc. but this must be managed across multiple nodes. In early PI
pilot programs, the PI will essentially be a “network of networks” where two transport and logistics organisations
will agree to connect their networks using PI protocols. In these circumstances the management of tokens and
authorisation can be handled manually. As the networks grow in numbers of participants it will become
impractical to manage authorisation, keys and identity manually and will require central management, likely
owned by a local trusted transport and logistics entity such as a port authority.

Integration with legacy systems such as ERP, WMS, TMS is also a critical element in terms of PI Integration. PI
systems, in particular for early adoption of PI and PI pilot programs. PI Services will initially be unable to function
in isolation and will require significant integration with legacy systems in order for the PI to be leveraged. The
exact manner and means of integration falls into distinct layers:

• The business level – this would be where organisations have agreements to connect their networks
together. This is a practical and legal process, not a technical one.

• The data level – the PI is the common data model, so that has been already define by GPICS and PI
Architecture, however the interface between existing legacy systems and PI Services will be required,
and this is a service provided by PI Service developers and IT staff in logistics organisations in a
coordinated effort. There can be no “universal adapter” as there are many different legacy systems with
their own data models. Although rare currently, standardized data models for logistics are becoming
more prevalent in research and industry and should be utilized for PI pilot programs.

• Access level – this is concerned not with what is communicated – but how is relevant to this document.
Regardless of the data model the manner and means is likely to be a REST API based communication in
line with existing PI Services. Authentication will likely be via authorised token or VPN or a combination
of both and these scenarios both align with existing external connectivity scenarios for the PoC
Integration Platform. It is possible that an intermediate application such as a “data adapter” is required
but this is simply to change the format of the data and something like AWS Lambda using serverless
functions can be utilized to do this. Therefore, the combination of API gateways and AWS lambda provide
and out-of-the-box approach for legacy integrations with PI Services in a manner and means described
in section 3.3.2.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 19

4 Deployment Strategies, Methodologies and Procedures
While ICONET is a research and development action, it is worth considering how the technical assets produced
by the project can be adopted in a real-world production engagement. In modern cloud deployments the CI/CD
(Continuous Integration/Continuous Deployment) approach is widely adopted and suits the needs of this project
well. CI/CD is based on the idea that as a developer commits new code and new changes, these are integrated
and deployed immediately as long as they pass a series of tests and verifications. This means that new features
and fixes can be made available to users immediately, in opposition to the “scheduled release” approach which
requires all changes and updates to be packaged together and all services and components to release these
changes in sync. This means updates will be complete but unused while other updates are in development.

4.1 Pipelines
The key mechanic that powers CI/CD is the concept of a pipeline. A pipeline is simply a series of steps that the
service or application passes through from code commit though to deployment.

Figure 10 - CI/CD Pipeline

As we can see in Figure 10 a developer will commit a new codebase to the source control repo for that component
or service and this will initiate the build process. In the above example the integration phase will build the
component, run the unit tests (self-tests) and the integration tests (testing the components behaviour in relation
to other components) before moving to the deployment phase. In the deployment phase the service is
committed to the docker registry for future re-use if needed, deployed into the staging environment and then
deployed into production. All PI Services in the ICONET PoC are deployed into AWS Fargate clusters. Fargate is a
serverless compute engine that the Elastic Container Service uses to run containerised applications. Fargate has
been discussed in more detail in the intermediate version of this deliverable (D2.20). It should be noted however
this is just one potential pipeline configuration, it is possible to add any number of stages in the pipeline

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 20

depending on requirements. For example, a security audit and evaluation is another common stage that pipelines
will include. As already stated, this project was to focus on the use of PaaS as much as possible, so the pipeline
systems provided by AWS were leveraged. However major pipeline systems available from other cloud vendors
or open source options such as Jenkins are very similar in their approach and use in that they accept assets and
resources from external sources or previous steps, perform and action and based on the results perform one or
more subsequent steps. On AWS the pipeline is provided as part of the AWS developer tools:

1. CodeCommit: This allows you to create source control repos. ICONET has 17 different source code
repositories for various versions and sub-components of the services developed for WP2.

2. CodeArtifact: This allows storage and version control of artifacts created as part of a build process (for
example a java library jar file)

3. CodeBuild: This allows for the building of applications. In the case of ICONET all services are
containerised, so the build phase builds docker images using the Dockerfile in the source repository and
packages in the source code and dependencies required for the image.

4. CodeDeploy: This tool allows the creation of “applications” to define how multiple components and
services might make up a single application. Then this application can be deployed using images from
the build phase into either a staging environment or straight into a production environment. In the case
of ICONET services are deployed into ECS (Elastic Container Service) Fargate clusters.

5. Pipeline: This is the tool that allows the creation of an actual pipeline composed of the previous 4 tools.
As we can see in Figure 11, the codebase and docker registry make up the source phase of the pipeline,
then there is a test phase and finally a deployment phase, but it’s possible to add an intermediary stage
at any point in the pipeline such as a security audit.

Figure 11 - Routing Pipeline

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 21

4.2 Recommended Pipelined Testing Strategies
There are a number of potential approaches for testing the PI services before deployment. If a PI Service
developer has included a set of unit tests, then it’s simply a matter of running these tests. The creation of Unit,
API and Integration tests are part of the development process and outside the scope of this deliverable. However,
IBM did build out the frameworks and pipelines to support testing, as well as implement the security audit
process as discussed below.

4.2.1 Unit Tests

Unit tests are a set of functions provided by the developers that ensure that for a given set of inputs, expected
outputs are received for the various internal components of a service. To avail of this one can either launch the
docker image with some specific command line variables passed, to initiate the tests, or one can check out the
codebase and run the tests directly. Which approach will depend on the type of approach chosen by the
developer. Both are supported by the AWS Developer toolkit.

4.2.2 API Tests

API Tests will simulate real requests to the API service and verify that responses returned are accurate. These
tests are not always applicable as some services will have multiple downstream dependencies that are required
for the API responses to be delivered. However, some services do not have such a reliance or can be adapted to
not need one. For example, the routing service depends on the networking service, but the routing service has
been designed to allow the static upload of a PI network. This allows the service to be tested by ensuring the
correct routes are returned. To perform these tests AWS Lambda can be used. As discussed in D2.20, version two
of this deliverable, AWS Lambda is a serverless code execution engine. This allows relatively simple scripts or
code to be written on run on a schedule or as needed. In this instance AWS lambda can make a HTTP API REST
request to the service being tested, verify the result and return a PASS or a FAIL.

4.2.3 Integration Tests

Integration Testing verifies the components will work together as designed. Using routing as an example once
more, routing requires the networking service to operate. To perform an integration test for routing, the pipeline
will deploy the new version of the routing service to be tested to a temporary staging cluster along with an
already known valid version of the networking service for the routing service to make requests to. The routing
service will be again tested by verifying the API requests using AWS Lambda or similar. If the single API test passes
but the integration test fails, this highlights a likely issue in how the services are communicating, but not how
they function.

4.2.4 Performance Tests

Performance testing is outside the scope of the ICONET project as any use of the PI services is taking place in
isolated pilot programs with the living labs. Performance testing is needed to address the limits of a single PI
Service instance with regards the number of concurrent requests it can accept and also to understand the
manner and means of failure that will be observed as the service begins to reach that limit and then actually hit
this limit. These kinds of KPIs are relevant where services are experiencing high usage in the form of multiple
requests per second. While the volume of requests in the ICONET PoC is low enough not to require performance
testing, this kind of testing and evaluation will be critical in any scaled real-world pilot programs for the PI.

4.3 Security Audit
The nature of microservices deployments with Docker as their backbone requires a new approach to security
audits and validations. Docker images are built by inheritance from a base image. These are usually operating
systems as Docker images (Ubuntu, CentOS etc.). Some additional tools may be added to this base image (for
example nodejs) to give it new functionality and this now becomes a new image. Then finally the PI Services
developer will pick an image to be the basis for the PI service. This means that any given docker image may have

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 22

a number of inherited images that it is built upon. Each with a vast array of potential security audit points. In
addition to that almost all PI Services are built using python. As part of the process of building a docker image
the python dependencies are installed. These are libraries that the PI Service application will need in order to
function correctly. The developer has full control to add as many dependencies as they see fit from any number
of potential sources. The resulting docker image will contain the PI Service code but will also contain a large
number of “unknowns” in terms of base image components, libraries etc.

Figure 12 - Vulnerability Notification

It’s not feasible to audit these by hand so a docker image audit tool is used to perform this. As seen in Figure 12,
In the case of ICONET, the audit tool allows for images to be scanned as they are pushed to the registry, and a
notification generated if the resulting report requires attention. An example report is shown in Figure 13. The
report indicates two medium severity CVEs (Common Vulnerability or Exposure). However, there are a number
of open source and commercial alternatives such as Anchore or Clair.

Figure 13 - Vulnerability Report

Clicking the CSV link on the left will bring more detail on the CVE and how to resolve as shown in the detailed
report in Figure 14. In this instance, we can see three versions of this library that are vulnerable to attack, so

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 23

changing to any of the known fixed versions will resolve the issue. In this circumstance the issue was with the
base docker image, not the developers code, so to update it will require rebuilding the base image with the
libraries updated.

Figure 14 - CVE Information

4.4 Deployments
The final phase of the pipeline is deployment. There are two deployment paradigms that have been considered.
In the case of a less substantial update – for example a minor bug in the UI (User Interface) of a web service - a
typo. To fix this a single service needs to be updated and it has minimal or no bearing on other services. Services
are packaged within the AWS dev-ops tools as applications. An application may comprise of one or more services
that are linked closely together. For example, the routing service operates by itself so an application definition
comprises of a single service. However, the IoT service is made of multiple services, so the IoT Container tracking
application is comprised of all these services. The application also manages the historical revisions of the
application and components that were deployed in the past. This facilitates rolling back to known functional
versions in the event of a faulty deployment.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 24

Figure 15 - Deployment Group

Within an application, a deployment group is configured for each PI Service. As seen in Figure 15, the deployment
group allows for the definition of where the PI Service will be deployed to, specifying which Fargate cluster and
which service definition within that cluster to use. The deployment group also defines the load balancer and port
assignments of the PI Service and finally the traffic rerouting strategy.

The traffic rerouting strategy allows for the setting of a deployment schedule by specifying a specific time to
remove the old service and deploy the new one. An approach here could be to engage the deployment at night
when there are little or no users if the service is only used during the day. The traffic rerouting strategy can also
set rate of rerouting. For example, every hour redirect and additional 10% of the traffic to the new deployment
until the old deployment is receiving no traffic. This allows for careful monitoring of the new service or
deployment an ensures issues are highlighted in time to reverse the deployment.

An alternate strategy for deployments is to use a staging environment. This is more applicable for deploying
much more significant changes that encompass multiple PI Services acting together, such as a new standard or
policy. In this situation there are two production environments available. One is accepting traffic from users,
while the other is used to deploy the latest service versions. The components have already been tested via the
pipeline, but some validation and testing can take place of the environment overall. Once this is done, the
endpoints that users are using to access the environment is switched from the existing live environment to the
staged. This is instantaneous and there is no downtime from the user’s perspective. Once again, if any issues are
observed, the endpoints are simply swapped back to the known good environment.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 25

Figure 16 - AWS Beanstalk Configuration

 AWS abstracts this process out using a tool called beanstalk. Beanstalk allows you to clone an environment once
it has been deployed once and manages the public endpoints to that environment. This then allows for multiple
versions of an environment to be easily recreated and multiple deployment pipelines configured as requirements
need. For example, there may be a live environment, a staging environment and a demo environment (which
allows critical customers to view potential new features and give feedback while development is still underway).
Beanstalk allows for centralised management of all environments and some of the specifics within those
environments also, as shown in Figure 16.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 26

5 Machine Learning Deployments

A number of PI Services either currently or will in the future leverage machine learning technology. These services
will still be leveraged via REST APIs as the other services are, but with a different analytical approach behind the
API interface. As seen in the Deployment section, the cycle for other services is straightforward:

• Developer checks in new code
• Code is built into a service
• Service is tested, audited, verified
• Service is deployed

However, services that are based on machine learning approaches require a different approach to pipelines and
deployments. The basic process for the development and creation of a machine learning API service covers the
following:

1. Data acquisition – All machine learning research requires significant datasets to work with for training
and validation.

2. Data Curation – Removing Data that is not relevant. For example, if analysing traffic patterns for
commuting rush hour, weekend data can be removed completely.

3. Data pre-processing – the data may not be in a desirable format and will need to be converted depending
on the tools being used and the formats they will accept

4. Definition of a machine learning approach or algorithm - This is the main task of the develop, ensuring
they pick an approach that matches the datasets and goals of the research

5. Training the machine learning model – this is the most computationally (and monetarily) expensive and
time-consuming part of the process. The time required will vary vastly depending on the hardware
available for training. CUDA GPUs will increase the speed at which training can take place but these
components are extremely expensive to purchase and equally expensive to rent through a cloud
provider.

6. Trained model is verified against the dataset – The dataset is usually split into two parts, one to train and
one to validate the model. Once the model has been validated to some chosen metrics (such as accuracy
or rate of false positives, false negatives etc.)

7. The model is deployed to an API service that accepts requests, passes them to the model, captures the
results and returns them to the requestor.

5.1 Requirements for new Machine Learning Deployment
As can be observed, there are a number of additional steps and there are now more than one places where a
change could initiate the requirement for a new service deployment:

1. The quality of the datasets for training changes
2. The format of the datasets for training changes
3. The developer changes the algorithm or approach (or alters the existing approach slightly)
4. A new dataset is provided

The last option, number 4 is of course the most common and most frequent. A machine learning service is only
as good as the data that it has been trained on. Therefore, any analytics being done on data that changes
periodically, seasonally or in line with other trends (financial, or consumer for example) will require new models
trained on data that represents these latest trends. A simple example of this would be any analysis of the product
choices consumers make for delivery during the summer would be meaningless during the months leading up to
Christmas. Similarly, analytics noting an increase in Pumpkin sales during the month of October will likely not be
relevant during the rest of the year.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 27

5.2 Microservices Approach
The initial development process combines the actions of curation, pre-processing, model definition and training
into a single application or script. This works well at early development as the developer can make multiple
changes in parallel however as the application approaches production, we see issues with this. A change to the
pre-processing method should not require us to retrain the image. Therefore, an emerging trend is to split the
actions into individual microservices, each dedicated to a specific task. This allows updates to one service without
interference with another. In the case of ICONET these services are docker based (as are all components in
ICONET) which allows them to be pipelined and deployed in the same manner as the other PI Services and using
approaches discussed in the Deployment section.

5.3 Model Training as a Service
However, there is an exception to this approach – the model training service will require access to specific
hardware. This is both expensive and complicated as most PaaS offerings do not easily allow access to such
hardware in their container compute services. One alternative is to purchase (or reserve) some dedicated
hardware with a GPU installed, but this is expensive and also not very cost effective as models are only trained
periodically.

PaaS offerings that are specifically design for machine learning are the best approach here. They will utilise
industry standard tools (such as Jupyter Notebooks) to allow developers to migrate their algorithmic approaches
to model training into the cloud. For the ICONET PoC AWS Sagemeker was used but all major cloud vendors have
similar services such as IBMs Watson Machine Learning or Google’s AI Platform. This allows models to be trained
as needed in the cloud. This brings a number of advantages, the first of which is cost. Since the hardware is only
engaged for the time needed to train the model, there is no lost cost to hardware sitting idle. Additionally, there
is no overhead in terms of administration or setup for dedicated hardware and because the models are trained
using a PaaS service, they accessible by other PaaS systems such as the pipeline tools and deployment tools.

Figure 17 - Sagemaker training job in progress

Once the training and algorithmic approach is defined, this can be created as a training job as shown in Figure
17. Combined with new data either being streamed or manually uploaded to a dedicated storage location, this
allows training jobs to be run on a predefined schedule, occurring frequently enough to account for any trends
in the dataset (weekly, monthly, etc.). The resulting models are then stored in in a dedicated storage location
within the cloud and are accessible for further use as shown in Figure 18

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 28

Figure 18 - Saved Model

5.4 Machine Learning as a Service
At this point, the model has been trained as is available in an S3 storage bucket (AWS refers to storage locations
as “S3 buckets”). There are two available approaches from this point forward. It is possible to use the arrival of
new model in S3 to trigger a pipeline build similar to the pipeline described in the Pipelines section. In fact, much
of the pipeline can be reused, aside from the triggering incident (a new model instead of new code. A machine
learning based service is built into a docker image in the same manner as any other PI service, however as part
of the build process it will import the model from S3.

The alternative approach is to avoid the use of docker images entirely. Usually, the bulk of the processing work
in a machine learning based service is performed by the model itself, and the docker image and other code within
are simply there as frameworks to support the use of this model, usually to simply accept requests via REST API
and pass the data provided to the model, capture the result and return it to the requestor. Since this functionality
is both simple and likely to be similar for any service that relies on a machine learning model, we can implement
it using PaaS in a much more efficient, secure and cost-effective manner.

Figure 19 - Machine Learning Endpoint - PaaS Powered

Figure 19 shows the various components involved in providing a machine learning powered service using only
PaaS services. On the top row we can observe:

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 29

1. The client – this is likely another PI Service or a 3rd party logistics management tool that is availing of
machine learning analytics.

2. The API Gateway – Also seen in the Integration Strategies & Approaches section, this tool provides a
public facing interface to the API. Through a simple configuration process the API Gateway can handle
some non-functional mechanics such as authentication keys, authorisation, certificate management and
so forth. Requests are made directly to the API Gateway and once the authentication & authorisation
elements are validated, the request is passed on (in this case) to AWS Lambda.

3. Lambda is a serverless execution engine provided by AWS. Serverless execution allows for relatively
simple applications or scripts to be run without the overhead of managing the libraries or underlying
compute such as docker, Kubernetes, virtual machines etc. In this case the code that captures the request
data from the API request and passes it to the machine learning model is implemented as a lambda
function because it is quite straightforward.

4. AWS Sagemaker provides an endpoint for a given machine learning model, as a single point of access for
entry. This can take some configuration in terms of the compute resources allocated to the endpoint and
also serves as a point of monitoring where some metrics such as rate of request can be captured.

5. The endpoint sends requests to a load balancer which distributes them across however many compute
resources are available. It is possible to configure the endpoint compute nodes to scale automatically as
needed – adding additional nodes as the rate of requests or complexity of requests increases ensures
there is no degradation in performance but ensures there is no cost for hardware sitting idle either.

On the lower half of Figure 19 we see the general steps for the creation of the models that the endpoint is using.
Data is either stream or uploaded (more details in the Integration Strategies & Approaches section) and is stored
in S3 storage buckets. The data is used to train new models which are deployed by Sagemaker to the model
endpoint. What is noteworthy here is that aside from the core work of designing an algorithmic approach that
the model will use, there is no further overhead from a development perspective. A data scientist can do effective
and useful work without the support of additional developers and with minimal training in the AWS services that
support the service.

Looking to the future, low power edge devices operating in a fog network will be utilized for inference based on
machine learning models. This can also be combined with the concept of distributed learning, which spreads the
analytics across a variety of devices in a fog network with dispirit data sources, allowing for more accurate
analytics. This is discussed in more detail in the following section.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 30

6 Future Trends in PI Service Deployment Models
The core goals of this deliverable and associated tasks were to provide a digital workbench that facilitated the
deployment, development and integration of the PI Services and other services and systems utilized in WP2.
Beyond that research was done to explore the non-functional considerations regarding the deployment, security
and access scenarios that the PI Services may need to be coupled with. However, it is valuable to consider the
potential deployment models that will be prominent as the PI begins to be introduced to real world logistics
operations in early pilot programs.

The EU has already identified emerging trends in cloud computing and has directed H2020 funding towards
projects exploring these future-looking computing paradigms. One of the major themes is to explore and
facilitate the “Cloud to Thing Continuum”.

In the last decade, more and more major organisations are moving away from traditional “On Premise” models
(where they deploy and manage their own data centres, equipment etc.) and moving their IT operations to the
cloud, usually engaging a major cloud vendor such as Amazons’ AWS, Google’s GCE, Microsoft, Azure or IBM
Cloud. However, in more recent years industry leaders like IBM are exploring trends moving towards the concept
of a hybrid approach. Combining the cost effectiveness of the cloud with the security and control of a private
datacentre (or private cloud). This has then further led to the concept of multi-cloud – where an organisation
should be able to engage multiple cloud vendors as well as their own datacentres, to leverage the strengths of
each that match their requirements and avoid being locked to any one approach.

The challenge in multi/hybrid cloud model is the overhead and complexity of trying to manage systems and
services that are spread across a myriad of providers and even physical locations. Each cloud vendor has their
own services, APIs, protocols, tools and private clouds will rely on open source tools or licensed tools. While
there is often overlap in the use of these tools between vendors, there is not always, and there can be version
and implementation mismatches.

The final emerging trend that requires consideration is the concept of edge and fog computing. Edge computing
refers to placing the compute power and other resources and resource management systems closer to the
consumers of said resources. A simple example would be a medium spec server that resides in a PI Mover (Truck,
barge, ship or train) and has the capability to consume sensor data coming out of PI Containers. Rather than wait
for connectivity to the cloud, this edge device will do its own analytics of the sensor data and forward the results
of these analytics to the cloud. By placing the device near the edge, the need to forward huge volumes of data
streams is dramatically reduced. The concept of fog computing expands this concept out further, to the idea that
there are multiple edge devices, in tiered or clustered sets that need to be managed in tandem with the cloud
services. Edge devices don’t always need to be resource heavy servers as in the example above, it could be as
simple as a raspberry pi (a low powered, small compute device), monitoring the rate of trucks entering a port
with a simple light sensor. These devices can use models that were trained in the high spec systems within the
cloud. The increasing trend is that any system or device that can be connected to a network can now be
considered part of a fog network. This applies to the transport and logistics domain as there are many systems
and devices currently in use today that will very soon (or already) have cost effective alternatives that have
enhanced processing and networking capabilities. Systems like handheld PDAs for delivery drivers, forklifts and
sensors on forklifts, trucks and GPS tracking, automated warehouse robotics and intelligent loading systems in
ports are all on the verge of a technological revolution that will see all of these systems joining the fog network.

6.1 Challenges for Multi-Cloud PI Services
So, with these trends in mind, how may they impact the PI, and how will the PI operate and exist in a world where
these trends have become more prominent?

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 31

Figure 20 - Multi Cloud PI Example

In Figure 20 we propose a possible scenario in the future of PI and how it relates to current trends in cloud and
edge computing. This example focuses on a logistics entity or node with a number of operational requirements.
During the initial adoption of PI it is likely that existing legacy IT systems will still play a major role in the logistics
operations of this organisation. In this scenario the logistics organisation uses three in-house systems – a
Warehouse Management System, a Fleet Management System and a Stock Management System. The three
systems share information and coordinate as needed and these systems are often deployed (but not always
deployed) at the premises where they are used – for example the fleet management system is running on a
server at the depot where the fleet operates out of but the warehouse management system is a cloud based
software solution. In addition, the logistics organisation is leveraging the PI and has deployed its own tailor
customed Shipping Service which serves as the entry point of this organisation into the PI world. They have also
deployed the routing service and are engaging the PI Optimisation analytics service. From Figure 20 there are
some points to note:

• The shipping service has been deployed into a simple, cost effective cloud vendor as the compute
requirements and resources needed for the shipping service are low. It should be easy to update and
manage it and require little overhead and be as cost effective as possible

• The Routing Service was deployed in an on-premise setting because the fleet management system is
deployed at the depot and the two services are closely coupled and integrated.

• The Warehouse management system is an out-of-the-box SaaS offering that operates entirely in the
cloud and is provided by a 3rd party.

• The PI Optimisation Service performs much more compute intensive and expensive operations, so is
deployed in a cloud vendor suited to this

• There are IoT Sensors on shipping containers that report a number of metrics at all times, but they have
no memory for resource optimisation reasons.

• However, many modern trucks, trains, ships etc have edge devices to receive sensor readings and some
initial analysis and data curation of the sensor data takes place here.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 32

• The PI Optimisation service consumes large scale data from multiple edge devices across multiple PI
movers which fuel analytics

This example highlights the many and varied likely communication lines in this scenario – there is almost every
conceivable data path occurring. Cloud vendors to other cloud vendors, cloud vendors to private clouds, legacy
systems to cloud systems, edge devices to cloud devices, sensors to edge devices and so on. Centralised
management of the systems, communication and orchestration of the applications within these systems is an
extremely complex challenge to overcome.

6.2 A Centralised Multi-Cloud Management System
As the multi-cloud paradigm is still somewhat recent there are a relatively small number of emerging multi-cloud
management solutions. Because this is a recent trend it’s difficult to identify a single industry leader. Indeed,
there are solutions provided by IBM, Redhat, Cisco, Dell, Citrix Rackware and many more. For this deliverable we
elected to focus on Redhat as Redhat technologies also underpin a lot of existing open source and PaaS
frameworks discussed in this document. Redhat provide a number of tools that each play a role in addressing
the issues above. It should be noted that the Redhat (or any other) multi-cloud management tools should be
considered as tools to work in tandem with existing cloud vendor PaaS systems. However, before discussing
multi-cloud management solutions it is necessary to re-examine cloud vendors and some private cloud tools
from a new angle.

6.2.1 Public & Private Cloud APIs and CLIs

In this document so far, we have seen a number of screenshots showing the management interfaces for AWS
tools and services. However, the GUI (Graphical User Interface) is not the only means to control and configure
these services. AWS also provides a CLI (Command Line Interface) and API access. The CLI allows individual users
to make changes and configurations, create and destroy assets and more via a text interface only. This is
sometimes more desirable than using the GUI as it maybe be faster or easier if there is a lot of configuration text
to be entered. However more significantly the CLI tool can be used by automation scripts or tools. Dev-ops
engineers can write scripts in a language of their choice to automate certain actions using the CLI tool.

API access performs much the same role, except it is designed only to be used programmatically or by automation
tools, not manually by a user. Both approaches use secure authentication as standard (username and password
for the CLI, tokens for the API) and are widely used and well documented. These tools are provided by all the
leading cloud vendors (Google, Microsoft, IBM, Amazon, etc.) but they are also often provided by private cloud
frameworks such as Openstack, VMware, Kubernetes, etc. Many tools and products that perform other functions
also provide CLI or API access (or both) such as networking systems (firewalls, switches), load balancers (F5),
storage clusters (Ceph) and more.

With so many interfaces for so many different products and services it is possible to create complex overarching
automation but there is a heavy overhead to creating, managing and maintaining these frameworks. However,
much of the work has already been done by Redhat Ansible.

6.2.2 Redhat Ansible

Ansible is an automation framework that operates through the command line using “playbooks”. A playbook is
simply a series of steps to be completed in a specific order. Playbooks are text files that indicate requirement
before a step is taken, how to take that step and then a way to validate the step was successful before moving
on. Ansible has a vast catalogue of libraries that allow it to interface with a huge number of products and services.
Everything from local systems to cloud vendors are available. An automation task could be as simple as creating

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 33

a folder and moving a file to as complex as creating a virtual private cloud and associated networks in AWS and
provisioning 100 VMs (Virtual Machines) into it.

There are many pre-existing playbooks to perform commonly performed actions (such as the ones mentioned
above) but if a playbook does not exist it can be created by a dev-ops engineer or adapted from an existing
playbook.

While Ansible is excellent for preforming automated and complex tasks at scale, it is not designed for ongoing
maintenance and visibility. This role is fulfilled by RedHat CloudForms.

6.2.3 Redhat Cloudforms

CloudForms makes use of the existing API and CLI access routes to public and private cloud tools as well as the
automation frameworks provided by Ansible to give a centralised management platform for a multi/hybrid cloud
environment. This platform gives centralised visibility of all resources in use across all resource providers as well
as facilitating creation, control and configuration of PaaS services and compute resources.

Figure 21 - Redhat Cloudforms

As we can see in Figure 21 CloudForms provides an interface to a number of different public and private cloud
providers through API access, which allows for a flexible range of different workload types and resource types.
In this instance CloudForms is managing traditional VMs from Openstack, a containerised workload from GCE,

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 34

pay-per-use dynamic services from AWS and MS Windows based workloads from Azure. The management
interface for CloudForms allows for a number of features:

• Insight – This gathers information about resources across all providers to give a single point view of the
status of workloads, and offers recommendations based on status

• Control – This allows for orchestration of workloads across multiple providers. Each cloud vendor will of
course provide its own solution for workload orchestration (this allows for automatic scaling, healing
etc.) but CloudForms enables orchestration across providers, allowing workloads to be moved towards
or away from certain providers depending on the workload requirements.

• Automate – Complex automated workflows can be created that leverage multiple providers in
cooperation to create, configure or destroy resources and design workloads

• Integration – CloudForms can be integrated with a number of existing industry standard automation
tools and API interfaces for significant customisation

6.2.4 Multi/Hybrid Cloud Networks

While CloudForms will provides a centralised manner in which to configure resources across multiple resource
providers, it is worth noting that it will not automatically allow for those providers to communicate with each
other, and without this communication path the power of CloudForms or any multi-cloud environment is highly
limited. Therefore, it is necessary to formulate secure communication paths between environments on different
cloud providers.

SDN (Software Defined Networking) provides a universally adoptable approach for this. As we’ve seen in the
Integration Strategies & Approaches section in this deliverable and also in the intermediate version of this
document (D2.20), Software Defined Networks have been utilised in the creation of the Proof of Concept (PoC)
environment for ICONET. This is based largely on the concept of the Virtual Private Cloud (VPC) which is a private
network space that administrators can create to contain whichever resources and assets they wish to deploy.
The VPC can be further configured into different zones and virtual networking functions are used to create
subnets, switches, routers, NAT gateways, public gateways, DNS servers and so on. VPCs are highly secure and
both public and private access routes can be carefully configured to maintain this security.

For two private cloud environments to communicate directly there are a number of options available but there
are two common approaches. The first being public API access. This has been discussed in the Integration
Strategies & Approaches section, and involves APIs that are open to the public internet that provide access to
functions or resources within the environment. The advantage to this is that there is minimal configuration
required, but the disadvantage is that any public facing interface comes with some security risks. Therefore,
sturdy security and authentication measures are needed to secure any public facing API. Most cloud vendors will
provide these functionalities, private cloud environments may need more manual configuration. The alternate,
more secure option to use VPN (Virtual Private Network) connections. In the intermediate version of this
deliverable (D2.20) VPNs were discussed as the manner in which developers created secure connections to the
VPC for the PoC from their laptops or desktops. However, VPNs can also be used for Site to Site connections,
allowing for a number of VPCs across multiple cloud vendors to be linked in a secure manner. Depending on the
configuration the connection between networks will appear seamless to the resources and assets within these
networks, and this can operate in tandem with management systems such as CloudForms to ensure true
cooperative multi-cloud workloads.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 35

6.2.5 Combining SDN, Ansible, CloudForms for a Multi-cloud PI Scenario

Returning to the example in Figure 20 above but focussing on the IoT data streams and processing elements we
can examine the creation and configuration of the multi-cloud approach needed. We can break the setup into
some distinct steps the first of which mirrors the PoC environment creation and configuration. This entails
creating the VPC and associated network functions and configuring them, deploying the services and then
configuring access through public interfaces and VPNs. Ansible playbooks already exist for many of these steps,
but some do not and will need to be written. However, this is not complex, as Code Snippet 1 below shows.

Ansible uses the AWS API to create the VPC as configured, the user does not have to use the API themselves,
simplifying the approach significantly. Other systems and deployments are created and configured using similar
approaches to above. CloudForms allows for the creation and maintenance of a catalogue of Ansible playbooks
that will perform commonly required actions and can manage these in a centralised manner.

Figure 22 - Multi-cloud PI Network Scenario

- name: create VPC
 ec2_vpc_net:
 name: "{{ vpc_name }}"
 cidr_block: "{{ vpc_cidr }}"
 region: "{{ region }}"
 state: present
 aws_access_key: "{{ aws_access_key }}"
 aws_secret_key: "{{ aws_secret_key }}"
 register: vpc

Code Snippet 1 - Ansible VPC Example

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 36

Figure 22 shows the scenario from Figure 20 with a focus on the IoT data streams. In this scenario the IoT sensors
in smart containers will connect to a local network if it exists – in this case the one on the ship. This connection
is a public network, as all containers will connect to the same network. The network on the ship is maintained by
an edge device which captures the sensor data for initial pre-processing, analysis or curation. This data can be
forwarded via a private network through local connectivity (for example the port authority). This is a private
network as the edge devices will only communicate with port authority networks through prior arrangement.
The IoT data is forwarded to cloud provider B, chosen for their competitive rates for IoT brokerage. This is done
via a secure VPN and finally the data can be accessed and visualised by an application deployed in Cloud Provider
A as they have competitive rates for simple front-end application hosting. Both cloud provider networks are
joined by a VPN also. CloudForms manages each entity through its own independent interface, and each of the
4 networks were created and are managed by CloudForms (using Ansible) but are used as communication
pathways between cloud environments.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 37

7 PoC Integration Environment Blueprint – Full Context

Figure 23 - PoC Blueprint

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 38

Figure 23 captures the technical components and component relationships in the PoC Integration Environment
in the full context of versions one, two and three of this deliverable in a single diagram. All major technical assets
(some elements were left out for clarity of the diagram) and services are represented in Figure 23 but have also
been addressed and discussed in detail in the three documents. Figure 23 serves to show the “bigger picture” of
how all the technical approaches and systems come together to form the PoC Integration Platform.

D2.19 (Version one) discussed:

• Based on the DoA, Defining Goals & Function of the PoC Environment
• The merits of PaaS as a service
• The approach for choosing a cloud vendor
• The variables and constraints needing consideration for the choice of cloud vendor
• Cloud vendor choice made & justifications for that choice
• Initial PoC Environment creation steps
• Potential Connectivity Scenarios for the PoC Environment

The outputs of that deliverable manifest in Figure 23 and this document by the choice of AWS as the cloud
vendor, the substantial use of PaaS systems in the PoC, the external connectivity points to developers, external
systems, external PI Nodes, and simulation users. Furthermore, the initial goes as set out in section 3.1 of D2.19
were addressed successfully as shown in Table 1 mapping the goals from D2.19 to the achievements as seen in
D2.21.

Table 1: PoC Integration Platform Goals

 PoC Integration Platform Goals (D2.19, 3.1, Table 2) Goals Addressed

1 Support the research and development efforts in WP2 by
providing any tools, frameworks, network connectivity,
user access and IaaS/PaaS infrastructure as required.

User access and secure connectivity
provided, security policies created, code
repositories created for source-controlled
development

2 Provide an integration platform upon which PI services can
be developed, deployed and tested.

All PI Services were deployed, tested and
redeployed with subsequent versions within
the PoC environment, with increasing use of
automation as the project progressed

3 Support the interconnectivity between the PI services.
Ensure that all communication ports and protocols are
supported and implemented as needed by the technical
requirements of the project.

VPCs, subnets, routing tables and firewall
policies ensured that all PI Services
communicated with each other and the
simulation service in a controlled secure
environment. When required, specific
access was granted externally via load
balancers facilitating Living Lab partners
access, external PI Node access, simulation
user access.

4 Support the interconnection between the PI simulation
environment and the PI services, IoT elements, and
Blockchain as necessary.

Similar to above, the VPCs, subnets, routing
tables, firewalls, load balancers etc granted
connectivity to these systems in the same
means as the PI Services

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 39

5 Provide integrated and controlled remote user access to
PoC integration platform.

Remote access for developers was provided
via secure VPN to the VPC, console access via
the AWS web UI, command line access via
the AWS CLI tool.

6 The integration platform should be flexible and elastic
when responding to the technical demands of the project.

The project facilitated and carried rapid and
significant redesign based on the needs of
the project and all requirements from the PI
Service developers were met in a timely
manner

7 The integration platform should always be available. The PoC Integration platform experienced
no outages or downtime during the course
of the project.

D2.20 (Version two) discussed:

• Restating the goals of the PoC Integration Environment
• The interdependencies of the PI Architecture and the PoC Integration Environment
• Integration Strategies and practical approaches
• The main resource and services (such as compute and storage) that would support the PI Services &

other services within the PoC environment.
• Deployment methods and approaches
• Reports on initial assets deployed
• Reports on pilot integrations
• Report on Simulation Service Deployment
• PI Services Dataflow

The outputs of D2.20 can be identified in Figure 23 by noting the integrations and data flows across multiple PI
Services, simulations, external actors, data sources and external systems. In addition, compute and storage
systems such as S3, Fargate, ECS and EC2 play a central role in the deployment PI Services and other services.

D2.21 (Version three & this document) discusses:

• More complex integration structures such as
o Elastic Load Balancers
o Static Addresses
o Public Access to PI Service APIs
o API Gateways, authentication and security
o Deployment pipelines
o Machine Learning

§ Data acquisition
§ Training
§ Model management
§ API Gateways & AWS Lambda
§ Machine learning based APIs

The outputs of this document, D2.21, can be identified in Figure 23 by noting the deployment pipeline across all
ECS systems and deployed services, the load balancers that serve as public interfaces to PI Services where legacy
systems, external PI nods and testing and evaluation can take place, the API gateway that fronts these load
balancers for authentication purposes and their relationship to existing SDN structures such as public and private
subnets in the VPC and NAT and Internet Gateways. In addition the machine learning pipeline can be identified

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 40

near the top of the diagram showing data acquisition, model training and storage and finally AWS lambda and
API Gateways to allow machine learning services to be available using PaaS.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 41

8 Conclusion
The research and technical implementations undertaken for these deliverables and tasks have successfully met
the current needs of the ICONET project. In addition, this document has begun to address the needs of future PI
engagements including anything from further research, to pilot PI programs to full production level PI
engagements. The containerisation approach is considered vastly superior to other approaches for service
development due to the homogenous nature of development work and flexibility provided. Containerisation
allows for a reusable series of deployment requirements across all PI Services. The PI Services stack clearly aligns
with the current trend in microservices based architectures which allows the PI Services to benefit from
orchestration technologies and emerging serverless compute approaches.

The use of PaaS as the supporting cloud and deployment frameworks in conjunction with containerisation and
microservices approaches matched well with the PI Service stack and should be an approach that is followed for
future PI research efforts. By limiting containerised services to core PI Service functionality this both offloads
non-functional requirements away from PI Service developers, but also allows for a unified approach to non-
functional issues (security, deployment etc.). Given emerging trends in cloud technology, the ability for all
services to be centrally supported and integrated across multiple cloud vendors is critical.

The use of machine learning technologies is recognised to be an approach that will be extensively adopted in the
PI and logistics domain given the huge benefits that could be derived from it. Strategies and technologies such
as robust data streams, cloud side pre-processing, the use of PaaS systems, service mesh, and CI/CD pipeline
integrations must be adopted to make efficient use of these technologies in harmony with existing technological
approaches.

The newest trend in cloud computing paradigms is to adopt a multi-cloud or hybrid cloud approach seeing
workloads spread across any number of private and public clouds across a number of technology providers. Given
the diverse array of actors, assets and systems in a PI scenario it is likely the bleeding edge of the PI will intersect
with the bleeding edge of cloud computing. It is critical to understand these trends now, adopt technologies and
practices early to integrate these two concepts to encourage PI adoption at the greatest possible rate. Emerging
paradigms such as multi-cloud and fog computing will change how organisations approach their IT solutions, and
not only will the PI adapt to these paradigms, but it will excel because of them.

The PoC Integration task and associated deliverables aimed to provide a strategy for collaborative research as
well as a technological approach to facilitate research and integration for PI Services and other assets. The PoC
platform supported research in the PI domain, aided in evolving the PI reference architecture, development of
PI services, supported deployment and integration of all PI Services and simulation services and provided
practical approaches for the present as well as state of the art approaches for the future which will ensure the
PI Services meet both functional and non-functional requirements.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 42

Annex I – Accessing the PoC Environment for Evaluation
Any authorised party outside the consortium who wishes to access the PoC integration environment hosted in
AWS can do so by making contact with ILS, the project coordinator, to arrange secure access via VPN or AWS
login credentials. Anyone accessing the PoC environment will need some dev-ops or cloud computing skills to
successfully navigate the assets, services and systems within as this is technical platform not designed for end
users.

The Anylogic Simulation service can be accessed from a browser at http://172.31.6.36/auth/login . Access
requires a login name and password which INV will provide and this interface does not require an IT, dev-ops or
cloud engineering background.

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 43

Annex II –PoC Integration Environment Screenshots

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 44

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 45

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 46

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 47

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 48

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 49

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 50

D2.21 - ICONET PI Control and Management Platform - Final Version

© ICONET, 2020 Page | 51

Bibliography

[1] “nxtPort - About,” [Online]. Available: https://www.nxtport.com/about.

[2] “What is Amazon VPC,” [Online]. Available: https://docs.aws.amazon.com/vpc/latest/userguide/what-is-
amazon-vpc.html.

[3] “Internetwork Traffic Privacy in Amazon VPC,” [Online]. Available:
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html.

[4] “What is Amazon EC2?,” [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.

