Skip to main content

Synchromodality

Related tags:

Groups & Contents tagged with "Synchromodality"

ReMuNet identifies and signals disruptive events and assesses their impact on multimodal transport corridors. It reacts quickly and seamlessly upon disruptive events in real-time. It supports TMS-providers to improve route planning resilience. ReMuNet communicates alternative, pre-defined, multimodal transport routes to logistics operators and subsequently to truck drivers, locomotive drivers and barge captains. Through this, it enables a faster and adaptive multimodal network response. ReMuNet orchestrates route utilization, suggests transshipment points and optimizes capacity allocation, minimizing damage and shortening the recovery time.

Category: Projects
Skill Level: Beginner

With this research project we combine forces with three universities (VUB, KU Leuven and UHasselt) that have expertise in different aspects of synchromodal transport. The objective is to develop a digital twin to further enhance the synchromodal concept and make synchromodal transport a reality in Flanders to boost the competitiveness and sustainability of its logistics sector.

To date the synchromodal concept remains rather theoretical and it is not well measurable due to the lack of an appropriate platform to provide reliable assessments in a highly dynamic and real- time environment. Such a platform would be able to mimic the current real system, but also simulate how it could evolve. The objective of this project is to develop such a platform in order to test dynamic planning algorithms and communication technologies which are also the main enablers for implementing synchromodal transport.

The platform will operate like a digital twin that mimics the physical reality on a digital platform. It will address questions such as how much to transport, when and by using which transport mode? How can we integrate replenishment decisions and inventory cost calculation within the transport planning process? How can collaboration between shippers and/or logistics service providers in an open logistics network enhance the sustainability and cost-efficiency of supply chains?

The project will focus on organizational and technical enablers for seamless synchromodal transport services in Flanders. Given the real-time dynamics and flexible nature of synchromodal transport, different transport modalities and actors need to work together and adapt according to unexpected events and contextual information that affect transport processes. These events and contextual information are related to negative as well as positive perturbations that shape freight movement and transport mode selection, such as newly incoming orders, transport delays, cancellations, collaborative bundling opportunities, accidents, water levels, strikes and many more.

Crucial elements in this regard are situational awareness of the current system state and projections of how the system will evolve once different actors take different actions. We will consider individual company objectives at micro level and network objectives at macro level.

Our platform will be represented by a digital twin in order to provide a testbed for synchromodal opportunities within a risk-free environment. A digital twin is a virtual environment that mirrors the real physical system (a physical twin) and its processes by updating its virtual real-time status from various sources of information regarding weather forecasts, congestion levels, positions of assets (barges, trains, trucks) and their ongoing working conditions. By means of the digital twin, effects of sensor technology and information exchange can be studied in combination with physical flows. Such a risk free environment allows for analysis and evaluation of triggering events (new orders, disruptions, delays...) which induce physical movements, and vice-versa, physical movements may trigger information flows once certain assets arrive at a specific location or enter a geo-fence.

Enrol to know more and be updated on project developments!



Category: Projects
Skill Level: Beginner

ICONET will significantly extend state of the art research and development around the Physical Internet concept in pursuit of a new networked architecture for interconnected logistics hubs that combine with IoT capabilities and aiming towards commercial exploitation of results. ICONET strives to achieve the end commercial goal of allowing shipments to be routed towards final destinations automatically, by using collaborative decisions inspired by the information centric networking paradigm, and optimizing efficiency and customer service levels across the whole network. According to this vision, cargo regarded as smart physical packets will flow between hubs based on ‘content’ of the cargo influencing key commercial imperatives such as cost, optimisation, routing, efficiency and advancing EU's Green agenda. Consequently, the consortium are discernibly aimed at three (3) avenues of commercialisation and exploitation from the ICONET innovation, specifically targeted in the areas of

(a) Warehousing as a service

(b) E-commerce fulfillment as a service, and

(c) Synchromodality as a service.

PI based logistic configurations will be simulated, prototyped and validated in the project . Modelling and analysis techniques will be combined with serious game type simulation, physical and digital prototyping, using living lab (LL) requirements scenarios and data. With analyses and simulations, optimal topologies and distribution policies for PI will be determined. The project implementation will be based on a succession of phases of modelling and design/prototyping, learning and experimentation and feedback and interaction with the wider business community, including the ALICE logistics platform as well as members of the partner Associations ESC, UIRR and ELUPEG. Through its Living Labs, the project will address under the PI paradigm both Supply Network Collaboration and Supply Network Coordination.

Category: Projects
Skill Level: Beginner

The EU faces the challenge to maintain and increase its economic growth and cope with the problem of freight transport efficiency in Europe. Integration of transport volumes and modes, better use of capacity, flexibility, resource efficiency and cooperation between all actors along the logistic chain are required.

Aligned with the European policies and the ALICE roadmap, LOGISTAR objective is to allow effective planning and optimizing of transport operations in the supply chain by taking advantage of horizontal collaboration, relying on the increasingly real-time data gathered from the interconnected environment. For this, a real-time decision making tool and a real-time visualization tool of freight transport will be developed, with the purpose of delivering information and services to the various agents involved in the logistic supply chain, i.e. freight transport operators, their clients, industries and other stakeholders such as warehouse or infrastructure managers.

LOGISTAR will address several advances beyond the State of the Art in the interdisciplinary field of the smart algorithms for data processing: Artificial Intelligence focussed onr prediction, parallel hybrid metaheuristics for optimization, automated negotiation techniques, and constraint satisfaction problem solving techniques. The resulting platform will outperform other market products and services such as Freight Exchange Systems, Collaborative Platforms, Transport Control Towers or Routing Systems.

LOGISTARS involves RTD organisations (DEUSTO, UCC, CSIC), technology developers (DNET, SWC), consultancy firms (MDST, PRESTON), ICT services developers (SAG, DBH, GENEGIS) and stakeholders from different stages of the supply chain (AHLERS, ZAILOG, NESTLÉ, PLADIS, CODOGNOTTO).

The duration of the project is estimated to be 36 months and has an approximate budget of 5 million euros.

For further information you can vistit the project website:  https://logistar-project.eu

Category: Projects
Skill Level: Beginner

PLANET addresses the challenges of assessing the impact of emerging global trade corridors on the TEN-T network and ensuring effective integration of the European to the Global Network by focusing in two key R&D pillars:

  • A Geo-economics approach, modelling and specifying the dynamics of new trade routes and its impacts on logistics infrastructure & operations, with specific reference to TEN-T, including peripheral regions and landlocked developing countries;
  • An EU-Global network enablement through disruptive concepts and technologies (IoT, Blockchain and Physical Internet, 5G, 3D printing, autonomous vehicles /automation, hyperloop) which can shape its future and address its shortcomings, aligned to the DTLF concept of a federated network of T&L platforms.
PLANET goes beyond strategic transport studies, and ICT for transport research, by rigorously modelling, analysing, demonstrating & assessing their interactions and dynamics thus, providing a more realistic view of the emerging T&L environment. The project employs 3 EU-global real-world corridor Living Labs including sea and rail for intercontinental connection and provides the experimentation environment for designing and exploiting future PI-oriented Integrated Green EU-Global T&L Networks [EGTN]. To facilitate this process, PLANET delivers a Symbiotic Digital Clone for EGTNs, as an open collaborative planning tool for TEN-T Corridor participants, infrastructure planners, and industry/technology strategists.

PLANET also delivers an Active Blueprint and Road Map, providing guidance and building public & private actor capacity towards the realisation of EGTNs, and facilitating the development of disadvantaged regions. The project engages major T&L stakeholders, contributing to both strategy and technology and (importantly) has the industry weight and influence to create industry momentum in Federated Logistics and TEN-T’s integration into the Global Network.

Category: Projects
Skill Level: Beginner
Skill Level: Beginner

In 2017 the comprehensive view on the Physical Internet from the IPIC conference merged with the technical and intralogistic view from the Logistikwerkstatt Graz for a promising format. Both the IPIC and the Logistikwerkstatt Graz are well established international conferences with broad contribution from industry and research. The purpose of our fourth Physical Internet conference was to bring together all interested parties and continue sharing of ideas to further build foundations and momentum towards the emergence of efficient and sustainable interconnected logistics. The Institute of Logistics Engineering (ITL) at Graz University of Technology hosted this international event July 4-6, 2017 in Austria on its campus.

The conference included keynotes from key stakeholders of supply chains (manufacturers, retailers, 3PL and academics) and stimulated the discussions in several workshop sessions. New business models, enabling technologies and experimentations already underway were presented, making this meeting a unique opportunity to learn, network and discuss the latest results and challenges about interconnected logistics.

In this content area you will find all contributions made to IPIC 2017 in Graz www.pi.events/IPIC2017/

Skill Level: Beginner

In this section you will find Reference Documents on the Physical Internet

Skill Level: Beginner