This Destination addresses activities that improve the climate and environmental footprint, as well as competitiveness, of different transport modes.
The transport sector is responsible for 23% of CO2 emissions and remains dependent on oil for 92% of its energy demand. While there has been significant technological progress over past decades, projected GHG emissions are not in line with the objectives of the Paris Agreement due to the expected increase in transport demand. Intensified research and innovation activities are therefore needed, across all transport modes and in line with societal needs and preferences, in order for the EU to reach its policy goals towards a net-zero greenhouse gas emissions by 2050 and to reduce significantly air pollutants.
The areas of rail and air traffic management will be addressed through dedicated Institutional European Partnerships and are therefore not included in this document.
This Destination contributes to the following Strategic Plan’s Key Strategic Orientations (KSO):
- C: Making Europe the first digitally enabled circular, climate-neutral and sustainable economy through the transformation of its mobility, energy, construction and production systems;
- A: Promoting an open strategic autonomy[[ ‘Open strategic autonomy’ refers to the term ‘strategic autonomy while preserving an open economy’, as reflected in the conclusions of the European Council 1 – 2 October 2020.]] by leading the development of key digital, enabling and emerging technologies, sectors and value chains to accelerate and steer the digital and green transitions through human-centred technologies and innovations.
It covers the following impact areas:
- Industrial leadership in key and emerging technologies that work for people;
- Smart and sustainable transport.
The expected impact, in line with the Strategic Plan, is to contribute “Towards climate-neutral and environmental friendly mobility through clean solutions across all transport modes while increasing global competitiveness of the EU transport sector", notably through:
- Transforming road transport to zero-emission mobility through a world-class European research and innovation and industrial system, ensuring that Europe remains world leader in innovation, production and services in relation to road transport (more detailed information below).
- Accelerating the reduction of all aviation impacts and emissions (CO2 and non-CO2, including manufacturing and end-of-life, noise), developing aircraft technologies for deep reduction of greenhouse gas emissions, and maintaining European aero-industry’s global leadership position (more detailed information below).
- Accelerate the development and prepare the deployment of climate neutral and clean solutions in the inland and marine shipping sector, reduce its environmental impact (on biodiversity, noise, pollution and waste management), improve its system efficiency, leverage digital and EU satellite-navigation solutions and contribute to the competitiveness of the European waterborne sector (more detailed information below).
- Devising more effective ways for reducing emissions and their impacts through improved scientific knowledge (more detailed information below).
Several levels of interactions are foreseen with other European initiatives, in particular with the Industrial Battery Value Chain (BATT4EU) partnership, the Cooperative Connected and Automated Mobility (CCAM) partnership and the Mission on Climate Neutral and Smart Cities, in particular:
- Joint topic “2ZERO – BATT4EU” D5-1-4 B - Innovative battery management systems for next generation vehicles (2ZERO & Batteries Partnership) (2023)
- Joint topic “CCAM – 2ZERO – Mission on Climate Neutral and Smart Cities” D5-1-5 Co-designed smart systems and services for user-centred shared zero-emission mobility of people and goods in urban areas (2ZERO, CCAM and Cities’ Mission) (2023)
Zero-emission road transport
Main expected impacts:
Aviation
Main expected impacts:
- Disruptive low TRL technologies that have potential to lead to 30% reduction in fuel burn and CO2, by 2035, between the existing aircraft in service and the next generation, compared to 12-15% in previous replacement cycles (when not explicitly defined, baselines refer to the best available aircraft of the same category with entry into service prior to year 2020).
- Disruptive low TRL technologies that have potential to enter into service between 2035 and 2050, based on new energy carriers, hybrid-electric architectures, next generation of ultra-high efficient engines and systems, advanced aerostructures that will enable new/optimised aircraft configurations and their cost-competitive industrialisation.
- New technologies for significantly lower local air-pollution and noise.
- Increased understanding and analysis of mitigation options of aviation’s non-CO2 climate impacts.
- Accelerated uptake of sustainable aviation fuels in aviation, including the coordination with EU Member States/Associated countries and private initiatives.
- Maintain global competitiveness and leadership of the European aeronautics ecosystem. Focus on selected breakthrough manufacturing and repair technologies that have high potential to lower the overall operating cost.
- Further develop the EU policy-driven planning and assessment framework/toolbox towards a coherent R&I prioritisation and timely development of technologies in all three pillars of Horizon Europe. Contribute to the mid-term Horizon Europe impact assessment of aviation research and innovation.
Waterborne transport
Main expected impacts:
- Increased and early deployment of climate neutral fuels, and significant electrification of shipping, in particular intra-European transport connections.
- Increased overall energy efficiency and use of renewable energies such as wind to drastically lower fuel consumption of vessels. This is increasingly important considering the likelihood of more expensive alternative fuels, where in some cases the waterborne sector will have to compete with other transport modes.
- Enable the innovative port infrastructure (bunkering of alternative fuels and provision of electrical power) needed to achieve zero-emission waterborne transport (inland and maritime).
- Enable clean, climate-neutral, and climate-resilient inland waterway vessels before 2030 helping a significant market take-up and a comprehensive green fleet renewal which will also help modal shift.
- Strong technological and operational momentum towards achieving climate neutrality and the elimination of all harmful pollution to air and water.
- Achieve the smart, efficient, secure and safe integration of maritime and inland shipping into logistic chains, facilitated by full digitisation, automation, resilient and efficient connectivity.
- Enable safe and efficient fully automated and connected shipping (maritime and inland).
- Competitive European waterborne industries, supporting employment and reinforcing the position of the European maritime technology sector within global markets. Providing the advanced green and digital technologies which will support European jobs and growth.
Impact of transport on environment and human health
Main expected impacts:
- The reduction of road vehicle polluting emissions (looking at both regulated, unregulated and emerging ones) from both existing and future automotive fleets in urban and peri-urban areas.
- The better monitoring of the environmental performance and enforcement of regulation (detection of defeat devices, tampered anti-pollution systems, etc.) of fleets of transport vehicles, be it on road, airports and ports.
- Substantially understand and provide solutions to reduce the overall environmental impact of transport (e.g.: as regards biodiversity, noise, pollution and waste) on human health and ecosystems.