loader image
Skip to main content

Section outline

  • Project Summary, Objectives and Expected Impacts


    PLANET is a project co-funded by the Horizon 2020 Program of the European Commission, starting on the 1st of June 2020, that goes beyond strategic transport studies and ICT for transport research, by demonstrating the emerging concepts (Physical Internet) and technologies (IoT, Blockchain) in three EU-global real-world corridors (China - EU- US). The project, which is scheduled to last 36 months, will focus in two key R&D pillars:

    •  A Geo-economics approach, modelling and specifying the dynamics of new trade routes and their impacts on logistics infrastructure and operations, with specific reference to TEN-T;
    • An EU-Global network enablement through demonstration of disruptive concepts and technologies (IoT, Blockchain and PI, 5G, 3D printing, autonomous vehicles /automation, hyperloop) which can shape its future and address its shortcomings.

    The project will liaise closely with the European Technology Platform ALICE and its developments and projects to join forces with all projects in this area. PLANET goes beyond strategic transport studies, and ICT for transport research, by rigorously modelling, analysing, demonstrating & assessing their interactions and dynamics thus, providing a more realistic view of the emerging transport and logistics environment.

    Three Living Labs will contribute to the strategic analysis of global flows, the analysis of corridor infrastructure issues, and the investigation of integration of the respective global corridor with the TEN-T. Furthermore, all Living Labs will investigate innovative ways to coordinate complex supply chains through multimodal corridors involving private and public stakeholders.

    List and short description of relevant pilots/living labs or test beds.

    Living Lab 1: Physical Internet and Blockchain for optimised door-to-door Asia-Europe corridors - Mediterranean Corridor

    LL1 will evaluate how new technologies (IoT, AI and blockchain) and concepts (Physical Internet) can improve processes, operations and efficiency along the door-to-door transport chains linking the Maritime Silk Road with EU internal corridors. LL1 will be divided in to two main use cases:

    1.  The first use case will focus on import/export door-to-door transport chain of containerized cargo between China and Spain and will evaluate how the combination of IoT (for real-time monitoring of logistics assets), AI (for better forecasts and intelligent decisions based on machine learning algorithms) and blockchain (for paperless transactions and the register of transport events), can contribute to a better management of the transport chain. The development of the PI paradigm will be investigated, where intelligent logistic nodes or hubs play a key role in transport decisions and are optimized based on real time events/information and historical data.

    2. The second use case will focus on warehouse operations and will explore how new IoT, AI, AR and automation technologies can contribute to the development of intelligent automated logistics nodes of the EGTN/PI network. This use case will complement Use Case 1, particularly on how to integrate smart Warehouse Nodes for EGTN routing decisions, ultimately creating PI Warehousing Nodes. The extended level of potential automation will be represented through simulation.


    LL2 will focus on dynamic and Synchromodal management of TEN-T & intercontinental flows promoting rail transport and utilising the Port of Rotterdam as the principal smart EGTN Node coordinating the rail focused transport chains linking China through Rotterdam to/from USA, and the Rhine-Alpine Corridor destinations. LL2 will include 3 main use cases:

    1.  The first use case will focus on Synchromodality in a Blockchain enabled Platform utilising advanced IoT, supporting PoR customers & communities to create the best multi-modal alternatives for logistics solutions within the LL2 corridors43.
    2. The second use case will focus on investigating Eurasian rail freight expansion in the LL2 corridor. LL2 will also utilize use case 1 tools to investigate freight flow synergies and Blockchain innovation to support integration with European RFCs.
    3. The third use case will analyse LL2 corridor flows and assess the implication for Port of Rotterdam and TEN-T infrastructure, extending results with data from EGTC and use cases 1 and 2. The use of the PLANET tools by Port of Rotterdam and “Interregional Alliance for the Rhine-Alpine Corridor EGTC’’ is directed at strategic corridor planning and in use by EGTC members in the context of use case1.

     Living Lab 3: IoT for Silk Road Route – reliable, transparent and fully connected corridor from China to the EU

     LL3 will focus on streamlining logistic processes in flows from China to Europe along the Silk Road by implementing IoT technologies (based on the EPCIS platform) and GS1 standards that facilitate transmission of data between the partners involved in the e-commerce operations. LL3 aims at:

     Standardising information flows and digitalising interactions between actors within the network (Alibaba, China Post, Polish National Post);

    1. Providing access to real time information on cargo coming from China to Poland along the entire supply chain through application of IoT and EPCIS to monitor supply chain events and support operational optimisation;
    2. Facilitating effective co-modal end-to end transport within EU’s internal rail network.

    www.planetproject.eu