
 

 
This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under the Grant Agreement No 860274. 

 

 

 

Progress towards Federated Logistics through the Integration of TEN-T into 
A Global Trade Network 

 

 

 

D2.14 Intelligent PI Nodes and PI Network 

services – final version 
 

 

 

Document Summary Information 

Grant Agreement No   860274 Acronym  PLANET 

Full Title  Progress towards Federated Logistics through the Integration of TEN-T into A Global 
Trade Network 

Start Date  01/06/2020 Duration  36 months  

Project URL  www.planetproject.eu  

Deliverable  D2.14 Intelligent PI Nodes and PI Network services – final version 

Work Package   WP2 

Contractual due date 30/11/2022 Actual submission date 28/11/2022 

Nature  Report Dissemination Level  Public 

Lead Beneficiary  VLTN 

Responsible Author  K. Zavitsas 

Contributions from  A.Molina, J. Rivas, C. Iorfida 

 

 

 

 

Ref. Ares(2022)8227182 - 28/11/2022

http://www.planetproject.eu/


D2.14 Intelligent PI Nodes and PI Services 

© PLANET, 2020  Page | 2  

 

 

Revision history (including peer reviewing & quality control) 

Version Issue Date 
% 

Complete1 
Changes Contributor(s) 

V0.1 15/09/22 10% Initial Deliverable Structure K. Zavitsas, M Kouloumpis, 
M Sacnchez, M Khlopok 

V0.4 03/10/22 50% Model description – Internal review M Kouloumpis, J Farren 

V0.6 20/10/22 70% Use cases draft description K Zavitsas 

V0.7 29/10/22 90% First complete draft  K Zavitsas 

V0.8 11/11/22 95% Draft for internal review A.Molina, J. Rivas, C. Iorfida 

V0.9 20/11/22 98% Internal review points integration K Zavitsas, M Kouloumpis, J 
Farren, M Sacnchez 

V1.0 22/11/2022 100% Final deliverable K Zavitsas 

 

 

Disclaimer 

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily 
represent the views expressed by the European Commission or its services. 

While the information contained in the documents is believed to be accurate, the authors(s) or any other 
participant in the PLANET consortium make no warranty of any kind with regard to this material including, but 
not limited to the implied warranties of merchantability and fitness for a particular purpose. 

Neither the PLANET Consortium nor any of its members, their officers, employees or agents shall be responsible 
or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein. 

Without derogating from the generality of the foregoing neither the PLANET Consortium nor any of its members, 
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage 
caused by or arising from any information advice or inaccuracy or omission herein. 

 

Copyright message 

© PLANET Consortium, 2020-2023. This deliverable contains original unpublished work except where clearly 
indicated otherwise. Acknowledgement of previously published material and of the work of others has been 
made through appropriate citation, quotation or both. Reproduction is authorised provided the source is 
acknowledged. 

 

 
1 According to PLANET’s Quality Assurance Process 

 
 



D2.14 Intelligent PI Nodes and PI Services 

© PLANET, 2020  Page | 3  

Table of Contents 

1 Executive Summary ..........................................................................................................................................5 
2 Introduction ......................................................................................................................................................6 

2.1 Mapping PLANET Outputs .......................................................................................................................7 
2.2 Deliverable Overview and Report Structure ...........................................................................................7 
2.3 Models alignment with PI structure and principels ................................................................................8 

3 PI Hub Choice model ..................................................................................................................................... 10 
3.1 Model Architecture .............................................................................................................................. 11 

3.1.1 Mathematical formulation............................................................................................................... 12 
3.2 Data Integration & Harmonization ....................................................................................................... 13 
3.3 Use Case Application ............................................................................................................................ 14 
3.4 EGTN Implementation .......................................................................................................................... 15 

3.4.1 Business value .................................................................................................................................. 16 
4 Last Mile Dynamic Collaborative Reshuffling ................................................................................................ 17 

4.1 Reshuffling Automation ....................................................................................................................... 18 
4.1.1 Nearby delivery rounds identification ............................................................................................. 18 
4.1.2 Parcel reshuffling ............................................................................................................................. 19 
4.1.3 Meeting point and delivery round redesign .................................................................................... 19 

4.2 Enabling Marketplace Functionality..................................................................................................... 19 
4.3 Use Case Application & Calibration ...................................................................................................... 21 
4.4 EGTN Architecture Integration ............................................................................................................. 23 

4.4.1 Kafka DB and EGTN services integration ......................................................................................... 23 
4.4.2 User and simulation interface ......................................................................................................... 23 
4.4.3 Business value .................................................................................................................................. 23 

5 Automated Capacity Pre-Booking ................................................................................................................. 25 
5.1 Model structure and EGTN integration ................................................................................................ 25 

5.1.1 Handling confidence intervals ......................................................................................................... 26 
5.1.2 Pricing structure and Stochastic Order Quantity theory ................................................................. 26 
5.1.3 EGTN service functionality ............................................................................................................... 27 

5.2 Use Case and Calibration ..................................................................................................................... 27 
5.2.1 Evaluation and flow prediction calibration (10-day and 3-day) ...................................................... 28 

5.3 EGTN Architecture Integration ............................................................................................................. 29 
5.3.1 Business value .................................................................................................................................. 30 

6 Conclusions .................................................................................................................................................... 31 
7 References ..................................................................................................................................................... 32 
 

List of Figures 

Figure 2.1 Living Lab 1 collaboration sequence map [1] ..........................................................................................6 

Figure 3.1 COSCO East Asia to Mediterranean containership routes [2] .............................................................. 10 

Figure 3.2 Process of transporting cargo through the China Europe intercontinental rail corridor ..................... 11 

Figure 3.3 Container on-board vessel with information for discharge location and final destination ................. 13 

Figure 3.4 PoE PI Hub Cluster and OD Network .................................................................................................... 14 

Figure 4.1 Example of delivery rounds monitoring dashboard ............................................................................. 17 

Figure 4.2 Nearby and available help round identification algorithm .................................................................. 18 



D2.14 Intelligent PI Nodes and PI Services 

© PLANET, 2020  Page | 4  

Figure 4.3 Multi-criteria mapping of last mile operators ...................................................................................... 20 

Figure 4.4 Parcel reshuffling algorithm output based on BlackFriday dataset ..................................................... 21 

Figure 4.5 Multi-company parcel reshuffling ........................................................................................................ 22 

Figure 5.1 Automated capacity pre-booking for smart contracts ......................................................................... 26 

Figure 5.2 1-10 day prediction model ................................................................................................................... 27 

Figure 5.3 PI Node OD pair pricing structure for up to 10days ahead predictions ............................................... 28 

Figure 5.4 Rolling horizon predictions for simulation day 9 .................................................................................. 28 

Figure 5.5 Model performance on a 40day simulation ......................................................................................... 29 

 

 

List of Tables 

Table 2.1 Adherence to PLANET’s GA Deliverable & Tasks Descriptions .................................................................7 

Table 3.1 Simulation output for Iberian Peninsula implementation of PI Hub Choice model .............................. 15 

Table 5.1 PI Node outbound trucking capacity pricing structure .......................................................................... 27 

Table 5.2 Comprehensive scenarios tested ........................................................................................................... 29 

 

 

Glossary of terms and abbreviations used 

Abbreviation / Term Description 

PI Physical Internet 

PoE Point of Entry 

IoT Internet of Things 

EPCIS Electronic Product Code Information Service 

VRP Vehicle Routing Problem 

OLI Open Logistics Interconnection 

DSS Decision Support System 

OD Origin Destination 

LSP Logistics Service Provider 

ETA Estimated Time of Arrival 

 

 



D2.14 Intelligent PI Nodes and PI Services 

© PLANET, 2020  Page | 5  

1 Executive Summary 

In this report Physical Internet services are presented that cover three specific supply chain domains: 

• Intercontinental corridor integration to PI Hubs 

• Warehouse Operations for Physical Internet enabled hinterland transportation, and  

• Last mile urban distribution 

The PI services are designed to align with the PI principles and have been generalized to fit into the Physical 

internet paradigm.  In the context of intercontinental corridors, Port of Entry PI Hub clusters are considered, and 

utilizing information on the destinations of the PI containers onboard a PI Mover, an optimal discharge PI Hub is 

identified for each container. In the context of hinterland transport, an automated capacity pre-booking solution 

is provided, that utilizing prediction confidence intervals and inventory replenishment theory, is found to deliver 

a 6.25% cost reduction for the tested OD pair. In the context, of last mile delivery, a dynamic parcel reshuffling 

algorithm is proposed, that can identify and utilise vehicles that are running ahead of schedule to micro-

consolidate cargoes and expedite deliveries, alleviating parcel returns to the distribution center due to delays.  

All services have been designed to utilise multiple information sources, and network up-to-date status updates, 

integrate standardized encapsulation and smart decision making, and promote operator collaboration. A 

collaborative marketplace is proposed in the last mile logistics context, that utilises criteria identified during the 

MAMCA workshop, to characterize all operators. Individual operators are then able to filter out operator profiles 

that they would not like to share loads with. Accommodating such operator constraints, enables the promotion 

of collaboration with last mile delivery operators that operate sustainable vehicles further enhancing the 

operational efficiency of the network.  
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2 Introduction 

In the context of the PLANET project and its Living Labs, multiple alternative technologies, infrastructures, and 
policies are considered. The aim of all alternatives is to drive operational efficiency in a Physical Internet enabled 
supply chain. The planning impact horizon of the decisions’ considered in PLANET project living labs ranges from 
operational to strategic levels. The three PLANET Living Labs investigate three unique aspects of technological 
and infrastructural development. Focusing on the connectivity of the TEN-T network to global trade corridors: 

• LL1 examines how new technologies (IoT, AI and blockchain) and concepts (such as Physical Internet) can 
improve processes, operations and efficiency along the door-to-door transport chains linking the 
Maritime Silk Road with EU internal corridors. 

• LL2 examines how synchro-modal dynamic management of TEN-T & intercontinental flows promoting 
rail transport and utilizing the Port of Rotterdam (PoR) as the principal smart EGTN Node coordinating 
the rail focused transport chains linking China through Rotterdam to/from USA, and Rhine-Alpine 
Corridor destinations, and  

• LL3 examines streamlining logistic processes in flows from China to Europe along the Silk Road by 
implementing IoT technologies (based on the EPCIS platform) and GS1 standards that facilitate 
transmission of data between the partners involved in the e-commerce operations. 

All PLANET Living Labs investigate the integration of TEN-T operations as hinterland to global corridors as 
illustrated in Figure 2.1 for LL1. As part of this exercise, three types of use cases are defined. The first concerns 
the sea-side collaboration, between ocean liner operators, and port operators. In a more generic sense, this 
represents the operators of a global corridor, irrespective of the mode. The second concerns long-haul hinterland 
connections, between port and terminal operators, LSPs and warehouse operators. The third concerns urban 
distribution and the collaboration between regional warehouse operators and last mile logistics companies. 

 

Figure 2.1 Living Lab 1 collaboration sequence map [1] 

The deliverable proposes methods and algorithms, that adapt legacy T&L practices to the operational principles 
of the Physical Internet. The proposed methods have been identified based on the challenges identified in the 
Living Labs but have been developed in a Living Lab agnostic way into services, as part of a more generalized 
framework of T&L solutions. The deliverable focuses both on the algorithms and their performance, as well as 
the EGTN platform that embodies the algorithms, their interactions with other EGTN services and where 
applicable with the interaction with the user. 
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2.1 Mapping PLANET Outputs 

Purpose of this section is to map PLANET’s Grant Agreement commitments, both within the formal Deliverable 
and Task description, against the project’s respective outputs and work performed. 

Table 2.1 Adherence to PLANET’s GA Deliverable & Tasks Descriptions 

PLANET GA 
Component 

Title 

PLANET GA Component 
Outline 

Respective Document 
Chapter(s) 

Justification 

DELIVERABLE     

D2.14 
Intelligent PI 
Nodes and PI 
Network 
services final 
version 

Intelligent PI Nodes and PI 
Network services final 
version using D2.3 – D2.10 
as well as the DSS tools. 
Final design and 
implementation of PI Nodes 
and Network services and 
deployment to the EGTN 
infrastructure. 

Chapters 3, 4 and 5 
describe the final 
versions of PI Nodes 
and Network services. 

The Network services considered 
range from Intercontinental flows 
Point of Entry to last mile routing 
decisions. The Node services 
decisions integrate with 
prediction models developed in 
D2.9 to deliver smart functionality 
for smart contracts.  

TASKS    

T2.4 Group 
multi criteria 
DSS for 
transport and 
PI Networks 

This task develops: 
Intelligent PI Nodes and PI 
Network services to 
optimise the efficiency of 
the whole transport system 
whilst reducing emissions 

 

Section 3, 4,and 5. 

Section 3 presents PI Network 
algorithms for PI Node choice. 
Section 4 covers the last mile 
parcel reshuffling, and PI Node 
algorithms for trucking capacity 
booking are described in Section 
5. In each section, data handling, 
mathematical modelling and 
calibration are considered. 

ST2.4.2 
Intelligent PI 
Nodes and PI 
Network 
services 

Performing intelligent 
forecasting and planning, 
intelligent and automated 
operations, and real time 
reporting of operations and 
the status of the nodes and 
the network utilising 
outputs from T2.2 and T2.3 
as well as the DSS tools. 

Sections 3.4, 4.4 and 
5.3  

For each contextual service, 
integration with other WP2 
services, implementation in the 
EGTN platform and dashboard 
interaction are described. 

 

2.2 Deliverable Overview and Report Structure 

The deliverable is the final and updated version of deliverable “D2.13-Intelligent PI Nodes and PI Network 
Services”. The algorithms and methods presented in this deliverable build on and complement the models 
presented in the interim version, and an effort has been made to be present the updates here in a full and 
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coherent manner. However, to avoid repetition, it is often the case that background material presented in D2.13 
is omitted, and any interested reader can use the interim material for further investigating the background and 
sources of inspiration for the models presented in this deliverable. 

In Sections 4 and 5 the PI services are presented in each section starting from a brief model description of the 
model and its functionality, covering mathematical formulations where applicable, and investigating model 
performance. As per the PLANET projects main objectives, the models presented cover three specific supply 
chain domains: 

• Intercontinental corridor integration to PI Hubs 

• Warehouse Operations for Physical Internet enabled hinterland transportation, and  

• Last mile urban distribution 

In all three contexts, the PI principles of improving on critical variables such as cost, utilisation rates, and 
emissions through improved multi-modal integration and open accessibility to static and mobile infrastructures 
are promoted through open and standardized interfaces, monitoring and data sharing, smart decision making 
and modularized encapsulation.  

Sections 3, 4, and 5 focus on PI solutions associated to each specific context respectively. For intercontinental 
corridors the proposed services focus on Point of Entry Hub identification for container routing. At the hinterland, 
the PI service focuses on appropriate, reliable tracking capacity pre-booking while at the last mile a collaborative 
parcel reshuffling solution is proposed. 

For each context, the data requirements and data preprocessing of the models are discussed. The algorithmic 
approach or where applicable the mathematical model is presented, and a use case implementation is discussed, 
based on real data for calibrating the model. The interfaces and integration with other EGTN services is presented 
for addressing specific user needs, as well as the dashboard implementation and GUI features are discussed. 

The deliverables findings are summarized and reported in Section 6, with the concluding remarks of the 
deliverable and suggestions for further work. 

 

2.3 Models alignment with PI structure and principels 

The PI Node and Network services described in this report are based on the supply chain operational questions 
illustrated in Figure 2.1. The Physical Internet’s Open Logistics Interconnection (OLI) and NOLI models and their 
functionalities are considered in the definition of PI services [5, 6]. In the definition of the PI layers the differences 
between data and physical goods transfer are considered, such as the fact that instead of just one kind of physical 
objects in data networks, there are actually three kinds of physical objects in physical networks: the physical 
means (as in data networks), the containers (that are just additional bits in data networks), and the goods (that 
are also just bits in data networks) [6].  

This challenge is primarily associated to the NOLI Network Layer, that is responsible to receive loads of pi-
containers from the Transport Layer and to create "blocks" from the loads. The Network Layer defines a path 
across the network for each block. The Network Layer computes and manages the routing of each block from its 
initial starting location to its final ending location. The Network Layer manages and maintains the data structures 
necessary to compute the best paths for the blocks. 

This routing decision is also captured in Figure 2.1, in the sea-side operation, the land-side operation as well as 
last-mile delivery. The pi-choice model presented in Section 3 deals with the sea-side and hinterland transport 
operations, while Section 4 focuses on last mile routing decisions and handling uncertainty.  

In terms of PI Node services, each warehouse, or consolidation center operator is required to provide sufficient 
outflow capacity considering the anticipated demand. This functionality is currently handled separately for each 
individual node. However, in cases where scheduled services are not available or do not provide sufficient volume 
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that meets node outflow demand, additional transport capacity requires to be booked. The service provided in 
Section 5, focuses on undertaking this task cost efficiently in a PI setting. The service integrates forecasting 
capability, with smart decision making, and smart contracts to facilitate the efficient allocation of transport 
capacity where needed which is fundamental for the efficient functionality of the PI. 
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3 PI Hub Choice model 

In a PI enabled global transport network, the integration of intercontinental transport corridors to the existing 
infrastructure network is a fundamental supply chain component. It represents the handover of cargo by 
intercontinental route operators to European hinterland operators and vice versa. The transition is currently 
limited in terms of efficiency by lack of up-to-date information, inadequate corridor and Point-of-Entry 
infrastructures and operational capabilities. This intercontinental corridor to EU network transition is present in 
all PLANET Living Labs albeit in their different contexts. 

It is found in sea-side collaboration, between ocean liner operators, and port operators. As discussed in D2.13 
[2] , container vessels operate fixed schedules between South-Eastern Asia and South Europe as illustrated for 
COSCOs aem1 and aem2 in Figure 3.1. Uncertainties in this context are typically associated with adverse weather 
conditions, delays due to strikes, and port congestion. Operators are therefore required to make marginal calls, 
and last-minute alterations to vessel schedules, that are difficult to manage, process and implement as 
alternatives routing options need to be established and booked for all cargo on-board the vessel whose discharge 
port requires to be changed. Operators and LSPs tend to avoid such last-minute alterations to only the absolutely 
essential cases, as for example to avoid a long-port strike. 

 

Figure 3.1 COSCO East Asia to Mediterranean containership routes [2] 

Intercontinental rail corridors such as the Silk Route interact with the European transport network through 
multimodal terminals such as the one in Malaszewicze, Poland (see Figure 3.2. In such cases cargo transported 
by rail, must travel through multiple countries and therefore undergo multiple equipment and infrastructure 
changes as various types of rails widths, locomotives and electrification currents are required. Increasing traffic 
along the route also implies higher delays and uncertain ETAs that significantly limit receiving LSPs ability to plan 
ahead and optimize their operations within the EU network. 

Similar issues arise in smaller intercontinental corridors such as the connection between continental Europe and 
the UK, where alternating policies as well as proximity have an impact on the added value of various operational 
solutions and propositions. In such cases, the short travel duration, does not allow for significant dynamic 
operational changes to take place efficiently. However, automated processes for handling cargo documentation 
have a significant impact on customs processing efficiency.  

Another significant aspect of the transition between intercontinental corridors and the EU transport network is 
the multiple stakeholders involved. In all three contexts LSPs, customs, one or more operators, intermodal 
terminals are involved in operating the supply chain. 

aem1 aem2
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Figure 3.2 Process of transporting cargo through the China Europe intercontinental rail corridor 

Therefore, for a feasible and impactful implementation of the Physical Internet principles, all stakeholders must 
be considered and a context-agnostic generalized solution is required, that involves, information standardization 
and exchange between stakeholders, as well as analytic and decision-making capabilities. The PI Hub Choice 
model algorithm is presented in Section 3.1, and the information standardization and processing is discussed in 
Section 3.2, while a performance assessment of the model is considered through a Use Case presented in Section 
3.3. 

 

3.1 Model Architecture 

The PI Hub Choice Model focuses on the containers loaded on a specific PI Mover. As a PI Mover is approaching 
a single Point of Entry to the European transport network (e.g. TEN-T), information on the final destination of 
containers is collected and combined with information on network status. The scope of the model considers 
network status, to identify the optimal Point of Entry for each of the containers, and therefore dynamically 
update the routing schedule of the PI Mover.  

For example, consider a vessel that is scheduled to call at Valencia and Barcelona, as COSCO’s aem2 route 
illustrated in Figure 3.1 and some of the containers loaded on the vessel are destined for the European 
hinterland. The PI choice algorithm considers: 

• the two ports of the route as well as additional ports in the Iberian peninsula such as Algeciras,  

• the infrastructure available at each port,  

• weather conditions,  

• sea-side congestion,  

• hinterland connectivity for both ad-hoc (trucks) and timetabled services (rail).  

In a generalized context, the algorithm considers alternative PI Hubs that belong to the same Point of Entry PI 
Hub cluster. Then if a delay is identified in the original PI Mover schedule, which may be caused by weather, 
strike action or simply high congestion, it seeks better performing alternatives. The algorithm therefore attempts 
to utilise hinterland transport connections, through alternative Points of Entry, if the PI Mover schedule originally 
navigates through a congested PI Node. 
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3.1.1 Mathematical formulation 

A mixed-integer linear program has been developed for determining the route of a PI Mover through appropriate 
PoE PI Hubs. In the formulation presented below, the PoE PI Hubs that belong to the same cluster are provided 
in advance.  

The program determines if a PI Mover 𝑀 should call the originally scheduled PoE PI Hub, or other PI Hubs that 
belong in the same cluster, aiming to optimize the operational costs of getting all containers currently on board 
𝑀, to their individual destination. A binary decision variable 𝑦𝑃 is defined for every PoE PI Hub 𝑃 in the cluster 
𝑃 ∈ 𝐶 of size 𝑛, that represents the decision to call or not to call 𝑃. The PI Hub Choice model determines whether 
to call the originally schedule Pi Hub, or any other or any combination of more than one PoE PI Hub, or all of 
them. 

𝑦𝑃 = {
0
1

   𝑖𝑓 𝑀 𝑔𝑜𝑒𝑠 𝑡𝑜 𝑃
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

∑ 𝑦𝑃

𝑦

≤ 𝑛 

The latter constraint is not limiting. It ensures that the decision variables can all be equal to 1, and the PI Mover 
calls all PI Hubs in the cluster. Further binary decision variables are defined that capture if a specific cargo 
shipment is discharged in Pi Hub 𝑃 or not. To this end, 𝑥𝑃𝑖 resembles the PoE of discharge and 𝑖 ∈ {1, … , 𝑚} is 
the container identification defined for 𝑚 containers on board to be discharged at any of the ports in the cluster, 
which is further tied to a specific destination. Therefore, for any container 𝑖, we have that: 

  

∑ 𝑥𝑃𝑖

𝑃

= 1 

The above constraint ensures that PI container is discharged at exactly one of the PoE PI Hubs 𝑃 in the cluster. 
Then the binary variable indicating whether a port will be called, 𝑦𝑃 is equal to 1 if at least one container is 
discharged there. The point of having a 𝑦 decision variable is to allow for additional operating costs of calling an 
additional PI Hub to be represented. Then, the problem can be formulated as follows: 

Assuming a set of 𝑛 candidate discharge ports 𝑃 ∈ 𝐶 and a set of containers to be delivered 𝑖 ∈ {1, … , 𝑚} at 
specific customers location 𝑗, a binary decision variable 𝑥𝑃𝑖 is equal to 1 if container 𝑖 is discharged at PI Hub 𝑃, 
and 0 otherwise. A matrix 𝑙𝑖𝑗  captures the relationship between containers and final destinations. An additional 

binary variable 𝑦𝑃 is equal to 1 if at least one container 𝑖 is discharged at PI Hub 𝑃, in which case a fixed port 
calling cost 𝑓𝑃 applies. A logistic cost proportional to the distance 𝑑𝑃𝑗  from port 𝑃 to customer location 𝑗 is also 

considered.  A sufficiently large number 𝑀 is considered. Then, a cost minimizing problem can be defined with 
the following objective function. 

min
𝑥,𝑦

∑ ∑(𝑑𝑃𝑗𝑥𝑃𝑖𝑚𝑖𝑗 + 𝑦𝑃𝑓𝑃)

𝑗𝑃

 

Subject to constraints: 

∑ 𝑥𝑃𝑖

𝑃

= 1 

𝑦𝑃𝑀 ≥ ∑ 𝑥𝑃𝑖

𝑖

 

𝑥𝑃𝑖 , 𝑦𝑃 ∈ {0,1} 

The first constraint ensures that each container on-board will be discharged at one of the PI Hubs. The second 
constraint ensures that even if the optimizer decides to discharge at least one container at PI Hub 𝑃, the decision 
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variable for calling PI Hub 𝑃, 𝑦𝑃 will be equal to 1, and the corresponding costs for calling the port will be 
considered in the cost function. Finally, the binary nature of the container and port call decision variables is 
defined. 

 

3.2 Data Integration & Harmonization 

From the formulation presented in the previous section, the PI Hub Choice model inputs include the containers 
on board a PI Mover and their delivery information, as well as port congestion and hinterland transportation 
costs. 

The data available does not always match model requirements and therefore additional harmonization prior to 
running the model is applied. For example, in the context of seaborne transportation, the data provided by one 
of the Living Lab partners was in .json format as illustrated in Figure 3.3. A similar dataset is available for every 
container on board a PI Mover, which in this case is a Cosco vessel.  

 

Figure 3.3 Container on-board vessel with information for discharge location and final destination 

The dataset contains information on the final customer; however, the PI Hub Choice model requires information 
about the transport cost for all PI containers, from any possible discharge port to their respective destination. 
This is essential to construct a network, as port congestion and hinterland transportation are represented 
through a graph of nodes and link as illustrated in Figure 3.4. 
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Figure 3.4 PoE PI Hub Cluster and OD Network 

The links and node of the network are developed depending on the mode of transport. For hinterland 
transportation, road transport distances are identified using an OpenStreetMaps API. Rail transport links are 
estimated to have a longer loading time due to transshipment, but a lower handling cost. Intercontinental link 
duration is identified based on historical data where available. Short sea links are estimated based on straight 
line distances and vessel speed, while an additional port entry link is considered to represent port entry 
congestion.  

Additional data was provided with scheduled services for hinterland transport such as for rail. Considering that 
scheduled hinterland services often offer viable and efficient alternatives to road transport, an amendment of 
the mathematical formulation is anticipated to handle this routing capability.  

 

3.3 Use Case Application 

The PI Hub Choice model was embedded in a simulation environment to test its performance. The simulation 
focused on the Iberian Peninsula, and more specifically the Point of Entry ports of Algeciras, Valencia and 
Barcelona that form a cluster and the hinterland transport serving and connecting them to the rest of Spain. To 
represent realistic conditions, the simulation considered 3 competing vessel operators with each having a daily 
service (one vessel) calling all three ports sequentially. The simulation assumed different port entry dwelling 
times per company, to account for port ownership schemes, as vessel operators are increasingly vertically 
integrating their operations. 

PI 
Hub 1

PI 
Hub 3

PI 
Hub 2

Destination 1

Destination 2 Destination 4

Destination 3

Destination 5
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Table 3.1 Simulation output for Iberian Peninsula implementation of PI Hub Choice model 

 

As illustrated in Table 3.1, 21 vessels with varying numbers of containers loaded on them were considered for 
seven consecutive days.  It is observed that one of the three PI Hubs is consistently omitted from each vessels 
schedule, with company 0 and company 1 vessels omitting PI Hub 3 and company 2 vessels omitting PI Hub 2. 
This behaviour is most probably associated to the company specific port entry costs. Table 3.1 illustrates the 
containers discharged per PI Hub, however, the model’s output is provided per container, rather than per vessel. 
Therefore, individual container routing instructions can be generated, once the discharge port and mode to 
destination are provided by the model. 

 

3.4 EGTN Implementation 

The PI Hub Choice model has been implemented as an EGTN service through an API that returns optimised PI 
container and PI Mover routing decisions. The PI container information is not digested directly by the PI Hub 
Choice model, but rather pre-processed to identify: 

1. accurate coordinate information for each PI Container destination based on the description provided by 
the PI Mover operator, 

2. identify alternative PI Hubs that belong to the same Point of Entry cluster, 
3. to establish road and rail hinterland connections between each candidate discharge PI Hub to every PI 

Container destination, 
4. and to populate a complete OD matrix of candidate routes to be considered by the PI Choice Model 

service. 

Additionally, a database of information on the anticipated Point of Entry congestion and queues is maintained in 
Kafka DB, that are retrieved by the PI Choice Model as input in its cost function. The congestion database is in 
the current implementation of the EGTN platform updated by the respective user querying the service. The 
output of the service is provided as a .json that contains two dictionaries, one containing each PI containers 

PI Hub 1 PI Hub 2 PI Hub 3 day company vessel

68 16 0 0 0 0

132 47 0 0 1 1

226 0 7 0 2 2

69 17 0 1 0 3

160 52 0 1 1 4

189 0 15 1 2 5

69 26 0 2 0 6

159 38 0 2 1 7

176 0 19 2 2 8

79 23 0 3 0 9

151 46 0 3 1 10

165 0 14 3 2 11

66 20 0 4 0 12

154 69 0 4 1 13

196 0 11 4 2 14

62 13 0 5 0 15

150 52 0 5 1 16

204 0 22 5 2 17

49 16 0 6 0 18

166 67 0 6 1 19

207 0 13 6 2 20
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discharge port and route to the destination, and one containing the PI Hubs that the PI Mover is scheduled to 
discharge containers at.  

The Track & Trace service monitors the location of PI Containers and the EGTN Knowledge Graph service tracks 
which parcels, and delivery addresses are contained in each PI Container. The two services operating together 
maintain the information of PI Containers on board a PI Mover. 

3.4.1 Business value 

Containers are moved on pre-defined routes established at the beginning of the process and following strict 
regulations and procedures. Each logistics node is under control of single company with no visibility of its supply 
and next nodes, therefore shipments can follow not optimized routes and can be affected by heavy delays.  

The PI network will expect to build flexible and resilient door-to-door services, in which all logistics nodes have 
the intelligence to identify optimized dynamic routing of containers through the network considering capacity, 
level of service and cost of transport modes available. Logistics services are visible and digitally accessible by all 
actors involved. This way user identifies his requirements in terms of origin and destination of goods and leaves 
the execution of the transport to the PI network, based on secure protocols and services to guaranteed trust and 
transparency.  

The tool enables the identification of optimal container forwarding options, bypassing congested ports and while 
considering hinterland transportation options and their capacity. The service integrates well with existing COSCO 
processes, as it can be run while a vessel is on-route and prior to reaching the first Iberian Peninsula port. 
Currently, the system is manual and responsive only to port strikes. Congestion and hinterland transport 
alternatives are not considered. 
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4 Last Mile Dynamic Collaborative Reshuffling 

The congested urban environment and the multiple different functionalities it accommodates, impose significant 
uncertainty in last mile delivery operations. Uncertainty is observed in travel times due to road congestion, 
parking availability in proximity to the delivery location, information accuracy associated with package drop off 
location, as well as when applicable uncertainty about the presence of the recipient at the time and location of 
the drop-off. Last mile operators frequently assume a unilateral travel speed and drop-off duration in their 
planning process. Depending on the conditions encountered during the delivery round, last mile operators 
frequently need to dynamically redesign urban delivery rounds, to alleviate delivery delays. This challenge is 
highly relevant to the concept of the Physical Internet and EGTN as it utilises the benefits associated to dynamic 
tracking of parcel deliveries and vehicle fleet. The problem focuses on decision-making at an operational level.  

Delivery rounds, that are typically fully designed prior to initiating their implementation every day, consider the 
delivery locations, fleet availability (i.e., the number and capacity of delivery vehicles available) and local 
accessibility constraints such as Low Emissions Zones (LEZs) or Zero Emissions Zones. When delays arise, in order 
to expedite a late delivery round completion time, operators sent assistance vehicles, that share the delivery 
load.  

 

Figure 4.1 Example of delivery rounds monitoring dashboard 

As discussed in the interim deliverable D2.13, the visualisation of the delivery rounds enables the manual tracking 
of delivery progress, and the identification of severe delays, when a delivery round is considerably behind 
schedule. The red vertical line at 3pm in Figure 4.1, captures the current time, and enables progress inspection. 
For example, route C17 (first row) seems to be roughly on-time, while round C24 (last row) seems to be running 
slightly late.  

It is also worth noticing that the sequence at which van drivers choose to implement the delivery round does not 
always align with the delivery planned route, as experienced delivery drivers have tacit knowledge about the 
complex operational environment in which they serve customers daily. They know which roads are hard to 
navigate, when traffic is bad, when and where they can easily find parking, which stops can be conveniently 
served together, and many other things that are difficult, if not impossible to formalize in an optimization model. 
This tacit information is therefore not contained in most route planning tools used in the industry, causing drivers 
to frequently deviate from originally planned route sequences. Considering their tacit knowledge, drivers follow 
a deviated actual route sequence instead, which is potentially more convenient under real-life operational 
conditions.  

As delivery round delays arise, the original planning and design of the rounds might need to be updated. This is 
because delivery operational constraints, such as delivery time windows (no deliveries past 9PM) and driver shift 
hours, cannot be violated. In such cases, a fleet operator tries to identify delivery rounds that might finish early 
or be ahead of schedule and dispatch them for helping the round running late. The process of identifying van 
availability, van suitability and then redesigning the delivery rounds, that involves identifying which parcels will 
be moved from the original van to the helping van, and where the two should meet for the parcel exchange will 
take place is currently undertaken manually.  
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The aim of the Last Mile Dynamic Reshuffling service is twofold: firstly, it aims at automating the process of 
identifying a vehicle that can share the delivery load with the late running vehicle, hereafter called the help 
vehicle and managing the operational parameters for materializing the exchange. This procedure involves 
identifying: 

• which vans can be sent for assistance without inflicting severe delays in their delivery obligations, 

• how many and which parcels require to be transferred from the late vehicle to the helping vehicle, 

• a common meeting point for the two vans, and  

• the dynamic redesign the delivery round for both vehicles featuring the common meeting point. 

Secondly, a critical constraint for effectively addressing delivery delays, is the availability of helping vans, which 
are typically limited as operators aim to utilise all their resources in the planning phase. Offering fair and balanced 
criteria for determining helping rounds contributes to promoting collaboration between otherwise competing 
operators. However, operators tend to seek solutions internally, rather than handing over their deliveries to 
other operators. A collaborative DSS is therefore provided to offer fair and balanced alternatives for collaboration 
to last mile operators. The service exposes the help request and then it applies filtering criteria as defined by the 
operator posting the request, in search for qualifying help rounds.  

 

4.1 Reshuffling Automation 

When an alert for a late running delivery is raised, the automated reshuffling model is initiated to assess possible 
options for assisting the van that is running late and optimise the process. The process is designed to run in two 
stages, with the first stage identifying the nearest available help rounds, and the second stage dealing with the 
redistribution of parcels, and redesign of the delivery routes. 

4.1.1 Nearby delivery rounds identification 

As illustrated in Figure 4.2, the first step of the process involves identifying all the delivery rounds operating in 
proximity. Following the openness principles of the Physical Internet, the proposed algorithm can consider the 
delivery rounds of one or more operators as candidates for helping the delivery round that is running late. The 
process firstly filters the rounds in terms of ETC, to identify the ones with higher availability, and then undertakes 
the more computationally intensive process of identifying the centroid for each round. The round centroid 
calculation considers all pending delivery locations for each round separately. 

 

Figure 4.2 Nearby and available help round identification algorithm 

The collaborative marketplace functionality for delivery assistance is an enhancement to this process that instead 
of considering a single operator’s vehicles, considers all vehicles operating in proximity and applies an operator 
customized filtering process. The marketplace functionality is presented in Section 4.2. 
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4.1.2 Parcel reshuffling 

Once the optimal help round has been identified, and it is confirmed that it is operating in proximity to the late 
running round, and it has sufficient spare time for handling additional parcel deliveries, the task of reshuffling 
the pending parcels is initiated. The aim of this task is to identify which of the pending parcels of the two rounds 
should be delivered by which vehicle, to alleviate overall delivery delays. The late running round meeds to share 
some of its load with the helping round, however up to this point it is not clear which ones should be transferred. 

A Machine Learning clustering algorithm is applied to the dataset, that divides the pending delivery parcels to 
two roughly equal in size clusters using their centroids [7]. The algorithm compulsorily assigns all nodes to one 
of the two clusters, leaving no nodes unassigned. The algorithm has been applied using a travel-time matrix as 
the criterion of vector separation of a node to the cluster centroid obtained by an Open Street Maps API. 

The output of the clustering algorithm is a tag for each node of the population, that corresponds to a unique 
delivery round. Each tag is then associated to each of the two delivery rounds, by using a simple linear 
optimization model that minimizes the number of parcels to be transferred to the help vehicle. The parcels are 
therefore, classified into the ones remaining in the late running round, the ones remaining in the help round, 
and the ones moving from the late running round to the help round. 

4.1.3 Meeting point and delivery round redesign 

After reshuffling the parcel delivery locations, and establishing the area moving to the help round, it is required 
to convert that information to instructions for the two vans and drivers. In effect, this includes the new routes 
for both vehicles, that incorporate a meeting point, and the information on which parcels require to be 
transferred from the one van to the other. 

The meeting point can be determined prior to addressing the vehicle routing decision. The meeting point 
necessitates proximity of the two vans, as well as limiting the waiting time involved in the process. To identify 
two locations with proximity that are suitable for serving as the meeting point, the locations of the parcels 
remaining on the late running round, and the location of the parcels remaining on the help round are considered. 
The locations of the parcels moving from the late running round to the help round are excluded from this process, 
as prior to the exchange at the meeting point, they are loaded on the incorrect van. The travel distances between 
all locations are considered and the two points with the closest distance are identified. This location is then 
added to the locations the help round requires to visit. 

The meeting point represents a proximity location suitable for the two vans to visit, however there is no 
guarantee up to this point that the two vans arrive there simultaneously. To address this, a common time window 
is set on both vans for reaching the meeting point. Depending on the position of the vehicles in comparison to 
the meeting point and the time available until the 9pm cut-off, the time window start time and duration are 
appropriately adjusted. If no solution can be found the meeting point time window is relaxed, by either delaying 
its start time, or expanding it, or both. 

A Travelling Salesman Problem with time-windows is then solved, including a common time window for reaching 
the meeting point, while no time window constraints are considered for all other locations.  

4.2 Enabling Marketplace Functionality 

The collaboration between last mile operators is a functionality that is yet to be unlocked in a practical 
perspective. Collaboration in the last mile can be performed in multiple contexts ranging from warehouse and 
consolidation location sharing to dynamic re-routing solutions. Last mile operators avoid collaboration for parcel 
deliveries, typically claiming fear of losing delivery volumes to competitors, poor service quality of other 
operators, as well as lack of brand recognition.  

In the context of the dynamic parcel reshuffling algorithm described in Section 4.1, operator collaboration leads 
to the identification of more candidate help vehicles and can significantly impact positively solution efficiency as 
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discussed in further detail in Section 4.3.  As part of the PLANET MAMCA Workshop undertaken in Poznan during 
the projects GA meeting in October 20222, the project partners worked together to identify the most significant 
last mile delivery stakeholders and performance criteria, also ranking them in terms of significance. When asked 
specifically about last mile delivery, the most significant criteria identified were: 

• sustainability 

• transport cost 

• congestion 

• service quality 

• emissions 

• driver availability (human resources) 

• delivery time 

• profitability 

Using a standard scale of performance for each of the criteria, a comprehensive characterization of each operator 
can be achieved. For example, Figure 4.3 presents a mapping of five last mile operators based on synthetic data, 
where Operators 1, 3 and 4 are conventional van operators while operators 2 and 5 and cargo bike operators, 
scoring higher in low emissions and sustainability performance.  

 

Figure 4.3 Multi-criteria mapping of last mile operators  

Maintaining a comprehensive multi-criteria performance characterization for each operator as the one 
illustrated above, enables a collaborative filtering process to take place. Each operator can pre-define acceptable 
performance criteria for collaboration. For example, a mainstream operator that uses vans, may specify 
emissions and sustainability performance for collaboration to be at least 7, in which case only the two cargo-bike 
operators would qualify. Then, after respecting operators’ collaboration preferences, the nearby delivery rounds 
identification algorithm can be executed (as described in Section 4.1.1), considering only the last mile operators 
that qualify after applying the multi-criteria filtering process. Note that the collaborative filtering service is not 

 
2 A detailed description of the Workshop and its proceedings is available in PLANET Deliverable D2.12 [3] 
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yet implemented as part of the EGTN parcel reshuffling service due to the limited last mile operators available in 
each Living Lab. 

 

4.3 Use Case Application & Calibration 

In D2.13 an initial implementation of the parcel reshuffling algorithm was presented. The algorithm was applied 
on a dataset provided by Living Lab 1 partner CityLogin describing the morning delivery plan for more than twenty 
delivery rounds on 10 July 2021. A simulation capability was also developed and integrated with the parcel 
reshuffling algorithm, as delivery round progress data during the day were not made available. As described in 
D2.13, the simulation imposes traffic, parking and handover delays, around the network. If a delivery round 
experiences delays, and a delivery is scheduled beyond 9pm, a late running flag is raised, and the parcel 
reshuffling algorithm is initiated. An additional dataset was made available describing the morning delivery plan 
on BlackFriday 2021. The original algorithm described in D2.13 used a K-Means clustering approach for parcel 
reshuffling, and routing based on straight line distance. The algorithm originally performed well and yielded 
satisfactory results for the parcel reshuffling component, however, the routing solution using the straight-line 
distances illustrated significant link overlapping, and was therefore amended to use city grid distances, and travel 
times utilizing an Open Street Maps API. 

 

Figure 4.4 Parcel reshuffling algorithm output based on BlackFriday dataset 

When testing the multi-company feature of the algorithm to assess how performance changes when operators 
choose to collaborate or not, three scenarios were defined: 

1. The baseline scenario assumes that there is no collaboration between last mile distributors operating 
in proximity and that parcel reshuffling does not takes place. When a delivery round is delayed beyond 
21:15, it returns to the distribution centre carrying any undelivered parcels, and a new dedicated 
delivery is scheduled for those parcels the following day. 

2. The ML enabled scenario assumes that each last mile distributor operates in isolation, however parcel 
reshuffling is possible between the same company’s vehicles. When a vehicle is estimated to make a 
delivery beyond 21:15, the parcel reshuffling algorithm is initiated, and a nearby vehicle (of the same 
company) is identified, to share the load. 

3. The collaborative scenario assumes that last mile distribution companies can collaborate. When a 
vehicle is running late and there are estimated deliveries beyond 21:15, the parcel reshuffling 
algorithm is initiated taking into consideration all vehicles operating in proximity. 

Due to the lack of availability of a multi-company dataset that is required for analyzing the scenarios described 
above, a copy of the CityLogin’s dataset was used to create a multi-company dataset. To achieve this, the 

old boundarynew boundary

area moving 
to help round



D2.14 Intelligent PI Nodes and PI Services 

© PLANET, 2020  Page | 22  

CityLogin delivery rounds where evenly and randomly subdivided into four ‘imaginary’ companies. The 
companies were assumed to handle equal volumes of traffic, and therefore the delivery rounds were evenly 
divided, however an un-even subdivision of delivery rounds may enable an analysis of the impact of the algorithm 
for different company sizes (i.e. larger operators have more reshuffling opportunities than smaller operators). 
An un-even subdivision of delivery rounds has not been considered and analysed in the context of this simulation 
analysis. In the multi-company scenario, the availability of help rounds is much sparser. Figure 4.5 illustrates the 
later running round (D36 shown in light blue at the bottom left) and the optimal same company help round C21 
(shown in green on the top right). When compared to the multi-company scenario that yields E24 as the optimal 
help round (as illustrated in Figure 4.4) it is evident that the same-company collaboration is considerably less 
feasible and efficient. 

 

Figure 4.5 Multi-company parcel reshuffling 

Furthermore, in cases where the distance between the delivery rounds operational areas is significant, as the 
one presented in Figure 4.5, it was observed that the K-Means cluster algorithm was not reshuffling any parcels. 
The K-Means clustering algorithms quantifies the centroid for all delivery locations of each delivery round and 
sets it as the centroid of the cluster gradually extending its region. It is, therefore, the case that when there is a 
significant distance between the vans, all nodes are assigned to a cluster prior to the two clusters sharing a 
common border. To address this behavior, and to enable parcel reshuffling even when the help van is not 
operating in proximity, the parcel reshuffling algorithm was adjusted to a constrained K-Means clustering 
algorithm, that yields equal cluster sizes [4]. 

 



D2.14 Intelligent PI Nodes and PI Services 

© PLANET, 2020  Page | 23  

4.4 EGTN Architecture Integration 

The EGTN implementation of the parcel reshuffling service, involves interoperation with other EGTN services. In 
a PI enabled context, all PI containers are monitored and tracked by the PI Networking Service. The OLI PI 
Shipping service acts as an orchestrator and raises a late running flag when a vehicle round is delayed, and the 
latest delivery is beyond 21:15.  

4.4.1 Kafka DB and EGTN services integration 

In the last mile parcel reshuffling use case, the Track and Trace service monitors the location of PI containers. 
The EGTN Knowledge Graph service is responsible for tracking individual parcels within PI Containers, and PI 
containers within PI Movers, and consolidating both historical as well as the current location and containerization 
data. 

Furthermore, the last mile routing service solves variations of the Vehicle Routing Problem (VRP) in efficient 
computational times. The VRP is typically solved by operators during the morning design of their daily delivery 
rounds. In the morning round design the shortest/ fastest route is identified and therefore a sequence for visiting 
all delivery locations is established. Depending on the nature of the products being distributed vehicle routing 
can be with or without time windows. In the context of parcel reshuffling, the VRP is solved for two vehicles with 
separate starting locations, and time windows, that ensure that both vehicles will visit the meeting point 
simultaneously. 

4.4.2 User and simulation interface 

The parcel reshuffling service is accessible through the EGTN user interface. The core functionality involves a 
choice of source data for the parcel reshuffling service, however extended functionality is anticipated for 
integrating parcel tracking capability either by using the PI container track and trace service data, or by individual 
operators connecting their existing tracking infrastructure with the EGTN platform. Last mile operators typically 
track van movements as well as parcel barcode scanning, which enables comprehensive and instantaneous 
tracking capability. 

4.4.3 Business value 

Higher first attempt delivery success is key for all the stakeholders involved. Each package returned to the 
warehouse due to a failed or out of time delivery, generates economic, social, and ecological costs. It is, 
therefore, key for Last Mile delivery companies to save the costs associated with having to do a second try. 
Currently, second delivery attempts represent around 20% daily extra cost for operations due to the additional 
amount of kilometres needed to either come back and try delivery on the same day or to return to base and plan 
the delivery for the next or a later date. It is also key for the cities to avoid additional runs by delivery vehicles 
operating, as they contribute to road occupation and pollution emissions.  

The use of the algorithm to support decisions in real time allows decisions to be made in the time and moment 
necessary so that they do not have a negative impact on the service, complying with the restrictions agreed in 
the SLA in a totally optimized way, avoiding the error of decisions out of time or not correctly valued by the head 
of traffic. The decision support provides notice regarding a future problem in the operation by analysing the data 
in real time and allows the correction of the deviation in an optimized way. 

In the case of use studied, the current situation of the operation, these aids are managed by the traffic manager 
based on his experience and supported by reserved assistance vehicles to be used in case of need if any delivery 
person suffers a mishap or delay. This implies an oversized cost for emergencies in terms of retention or 
activation of a resource to prevent service problems. 

The use of algorithms for decision support allows optimizing the resources available to the traffic operation by 
providing information on routes with problems in advance. It also provides the best possible solution by 
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determining the vehicle that can help, the time, the place and the number of packages that must be transferred 
from one route to another and that allows the daily objective to be met at the lowest possible cost. 

The transmission of packages would take place within the track and trace system, so that the traceability of the 
package would be guaranteed, allowing to know in real time when it has been carried out and, based on the 
plan, to know the estimation of completion. 

For the end customer, as far as the service is concerned, it would allow a more faithful adjustment to the 
estimated delivery time, increasing the perceived level of service and avoiding the implications for it of delays 
and cancellations. 

It allows increasing the % of services delivered on the first attempt, reducing the average cost per delivery, using 
the available resources, both human and vehicles, in a more optimized way, reducing their under-use or over-
exploitation and, therefore, allowing better working conditions for the while increasing productivity. 

In a more holistic version of the market, it also allows the interaction between several logistics operators, being 
able to integrate these solutions between several operations in order to optimize the global transport resources 
in a specific place and time, in an interoperable concept of digital solutions, such as, for example. a city would 
allow the operator to resort to the underutilised resources of the competition in order to meet its agreed level 
of service and in turn increasing the optimization of the competitor's resource creating value for both and for 
the entire context of the city by optimizing the use of everything possible of the resources available for last mile 
deliveries. 
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5 Automated Capacity Pre-Booking 

The Automated Capacity Pre-Booking service is a novel Decision Support System (DSS) service that determines 
the capacity that requires to be pre-booked for outbound shipments for a specific warehouse and route. The 
service aims to disrupt current practice in warehouse and terminal outbound capacity booking, aligning with the 
principles of the Physical Internet and utilizing advanced analytics.  

Current warehouse operations are based on pre-agreed contracts with freight forwarders or carriers for a fixed 
number of trucks. However, unexpected demand at specific moments or other events often creates the need for 
the booking of extra trucks. Several parameters may affect the demand for trucks in a warehouse. These include 
the following: 

• Periods of increased shopping 

• Events affecting routes and truck availability 
o Strong weather conditions. E.g., the Filomena Storm caused chaos in transportation of goods 

due to traffic cuts. 
o Transport strikes. 

• Current affairs and their effects on the economy 
o The pandemic. For instance, lockdowns cause an increase in online shopping. 
o International conflicts (e.g., the Ukrainian war) 
o Fuel prices. Price increases often cause strikes. 

• Day of the week. Warehouse flows typically follow a weekly seasonality. For example, there are no 
operations on Sundays, and there is therefore an increased workload at the start of the week. 

• Continuous growth of e-commerce. 

These parameters cause uncertainty and sudden variations in warehouse flows, that the fixed contracts in place 
with freight forwarders or carriers are difficult and costly to adapt to. Auxiliary trucking capacity is booked one 
day ahead of execution based on expected outbound demand. One day ahead, warehouse operators hold 
definitive bookings and outbound traffic information, and are therefore fully aware of what requires to be 
shipped, enabling them to make the appropriate trucking capacity bookings. Changes on the day of execution 
are also possible either in the form of booking additional capacity or as a cancellation. In case of last-minute 
alterations, a premium or cancellation fee is paid for booking more or cancelling some capacity respectively. 

The pricing structure of cancellations and bookings are dependent on the planning horizon of the operator and 
how many days ahead of execution the booking or cancellation is made. A discount can be associated to the 
booking price and the cancellation fee if made “early”. When capacity is booked several days prior to execution, 
carriers can better optimize their operations, and therefore can offer an improved rate. A similar logic applies to 
early cancellations, as the carrier can still search for alternative cargoes. 

The automated capacity pre-booking is a service that is relevant to every PI Node and PI Hub in the T&L network, 
as it utilises historical data to make short-term predictions and makes pre-bookings in a cost-efficient manner. 
The predictions are made separately for each delivery route originating from the PI Node, as each destination 
serves unique customers with unique demand characteristics.  

 

5.1 Model structure and EGTN integration 

The “Automated Capacity Pre-Booking” DSS is a sub-component of a series of EGTN services that are designed 
deliver smart contracting functionality, which is described in additional detail in Section 5.3. The core concept of 
automating the smart contracting capability, lies in utilizing early predictive capability and the confidence 
intervals produced by predictive models.  

In the context of booking PI Node outflow trucking capacity, predictions need to take place within 10-day as well 
as 3-day windows. Predictions become less accurate, the further ahead in the future they look. Therefore, for 
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regular daily operations, 3-day predictions provide a sufficient time frame for truck bookings which allows to 
account for up-to-date information on weather. In addition to this, unforeseen events may occur that may be 
known only a few days in advance (e.g., strikes). In such situations, the warehouse operator follows a contingency 
plan. This is a manual process which requires the booking of extra trucks a few days prior to the event to ensure 
that pallets will reach their destination on time. On the other hand, 10-day predictions become valuable from a 
business perspective as we are approaching periods of increased shopping (e.g., Christmas or Black Friday). For 
instance, an increase in bookings due to a special event such as Black Friday, can be predicted at least a week in 
advance. In such an occasion, truck bookings can be made several days ahead of the event and better prices can 
be negotiated. 

5.1.1 Handling confidence intervals 

 

Figure 5.1 Automated capacity pre-booking for smart contracts 

As illustrated in Figure 5.1, predictive models are developed either using supervised Machine Learning models 
or time-series analysis. In the context of this report, and based on the datasets considered in PLANET’s Living 
Labs, only the latter option (i.e. time-series analysis) is considered, however, it remains valid for all types of 
statistical models, that confidence intervals can be exported. To address the issue of demand uncertainty, 
confidence intervals from the predictive models are considered. 

Wikipedia describes a confidence interval (CI) as “a range of estimates for an unknown parameter. A confidence 
interval is computed at a designated confidence level; the 95% confidence level is most common, but other 
levels, such as 90% or 99%, are sometimes used”. A CI is therefore a range of values (a lower bound and an upper 
bound), where we expect our prediction to fall in with a certain level of confidence. The size of the interval is 
directly proportionate to the level of confidence. Therefore, we can propose a narrow interval with low 
confidence, or a larger interval with higher confidence. 

The aim behind the use of confidence intervals, is to ensure that when smart contracts are triggered, they will 
not book higher a truck capacity than is needed. Instead of using the actual prediction value, which might be 
either an underestimation or an overestimation, smart contracts may be issued using the 95% (or even 99%) 
confidence intervals. This provides meaningful information in terms of booking trucking demand using the lower 
CI value, given that there is a high confidence level that the actual demand will be above the lower bound, and 
therefore high degree of certainty in the outcome of the model. In this manner, the output of the models is a 
prediction range rather than a single number (i.e., the number of pallets). Confidence intervals are particularly 
meaningful in the case of the 10-day predictions, as they break down the prediction to levels of various degrees 
of certainty.  

5.1.2 Pricing structure and Stochastic Order Quantity theory 

The proposed capacity pre-booking service is optimized for a specific cost structure, as it utilises features of 
inventory replenishment theory. Inventory theory is concerned with the design of production/inventory systems 
to minimize costs. Provided a level of demand expressed in the form of a demand distribution, and a given 
purchase, and holding cost structure, stochastic optimization is used or Monte Carlo simulation to identify an 
optimal order quantity, known as Economic Order Quantity. In the context of PI Nodes, the aim is not to figure 
out how much inventory to order, but rather how much capacity to order for a specific demand profile. 
Furthermore, inventory management uses holding costs and markdown prices, to capture the effect of time on 
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the inventory quantity, while in a freight logistics context, this can be replaced, by early capacity booking discount 
and late cancelation fees. 

The service therefore assumes a known pricing structure of the form illustrated in Table 5.1, where 𝑏10 < 𝑏3 <
𝑏0 and 𝑐10 < 𝑐3 < 𝑐0 are true. A more comprehensive pricing structure with booking and cancellation fee values 
for more prediction options ahead of execution can be considered.  

Table 5.1 PI Node outbound trucking capacity pricing structure 

 Booking fee Cancellation fee 

Execution 𝑏0 𝑐0 

3-day 𝑏3 𝑐3 

10-day 𝑏10 𝑐10 

In conjunction with the confidence intervals, and the pricing structure, the stochastic capacity order quantity, 
will provide a value of financially viable trucking capacity to book. This means that high certainty volumes can be 
associated to low booking prices, while low confidence predictions will be associated with higher booking prices. 
In such a scenario, should a prediction generate more bookings than needed, the warehouse operator will cancel 
the booking and pay the associated penalty.  

5.1.3 EGTN service functionality 

The proposed DSS receives a 95% confidence interval, and a prediction-day tag. If the prediction tag indicates 
that the confidence interval provided is a 10-day one, then the DSS informs the smart-contract service to book 
the lower bound of the CI capacity. If the prediction tag indicates that the confidence interval provided is a 3-day 
one, the service considers the pricing structure and performs a Monte Carlo simulation with 1000 synthetic 
values. Then a linear optimization model is applied to the simulated cases to identify the optimal Economic Order 
Quantity, which is then communicated to the smart contract service to book. Finally, for a 0-day tag the model 
return the expected average of the prediction.  

 

5.2 Use Case and Calibration 

The automated capacity pre-booking services, relies on a prediction service using historical data and time-series 
analysis to provide an estimate for outgoing flow from the PI Node to a specific destination. The aim of the service 
is to ingest this prediction and propose a cost optimized capacity to the smart contracting service. Figure 5.2 
illustrates a 1-to-10-day prediction using a seasonal ARIMA model as well as the 95% confidence intervals. 

 

Figure 5.2 1-10 day prediction model 
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Figure 5.3 PI Node OD pair pricing structure for up to 10days ahead predictions 

For the specific PI Nodes OD pair, a pricing structure is provided as the one illustrated in Figure 5.3. The pricing 
structure reflects Living Lab 1 operator DHL and truck services from a Madrid warehouse to a Barcelona 
warehouse. 

To establish a rolling horizon prediction the same seasonal ARIMA model is applied daily to produce a set of daily 
predictions that consist of the average prediction (illustrated by the blue line in Figure 5.4), a 95% CI lower bound 
and higher bound. As illustrated in Figure 5.4, the simulated rolling horizon, yields various average prediction 
values ranging from as low as 60.89 for the 10-day prediction to as high as 71.88 for the 4-day prediction, while 
the actual capacity executed is 66.2. 

 

Figure 5.4 Rolling horizon predictions for simulation day 9 

To identify the optimal pre-booking quantity, a reasonable, safe and cost-efficient capacity requires to be 
obtained. Furthermore, as the booking capacity action points are 10-days and 3-days prior to transport 
execution, the search is for two appropriate capacity figures, one for pre-booking 10-days ahead and one for 3-
days ahead. 

5.2.1 Evaluation and flow prediction calibration (10-day and 3-day) 

As discussed in the previous section one can use multiple confidence intervals as less or more confidence yields 
different CI ranges. Additionally, the inventory replenishment theory, utilises the pricing structure to identify as 
cost-efficient pre-booking capacity. Using the inventory replenishment theory, seems like a reasonable option as 
the confidence interval naturally shrinks as we approach the transport execution day, therefore influencing the 
proposed Economic Order Quantity value. 

To test this hypothesis, originally three scenarios were tested: The baseline was defined as booking the entire 
actual capacity on the execution day at the highest rate. The daily average scenario assumed daily changes in 
the booked capacity using the new prediction available while the 10/3 average scenario assumed alterations in 
the booking capacity being made only 10-days and 3-days ahead and no action taken the rest of the days. In 
cases where a new prediction was lower than the already booked capacity, then if an adjustment was made, a 
proportional cancellation fee was applied. For booking 66.2 containers on the 10th day of the simulation, the 
baseline scenario cost was $40567, the daily average scenario cost was $37687, and the 10/3 average scenario 
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cost was $36546. In this case the 10/3 average scenario is found to outperform the other two, as the daily average 
scenario frequently imposed cancellation fee costs making it slightly more costly. 

A further test is conducted to examine the long-term performance of various scenarios, considering 10-day 
prediction rolling horizons for 40 transport execution days in the simulated environment. Considering the 
findings of the first test, and the fact that the scenario that considered two days of action (10 and 3 days ahead) 
outperformed daily action scenario, the scenarios illustrated in Table 5.2 are considered. 

Table 5.2 Comprehensive scenarios tested 

 10-day 3-day Execution day 

Baseline 0 0 Average 

Average Average Average Average 

Start_Low 95% CI Low Bound EOQ Average 

Start_EOQ EOQ EOQ Average 

 

To assess the performance of the models 40 days are simulated and for each one of them a 10day rolling 
prediction is produced. Figure 5.5 illustrates the daily performance of all four scenarios. The blue line 
representing the baseline is most commonly the lowest performing option, except a few cases as in days 16, and 
33 when the average (red line) performs worse due to high initial predictions. The red line is also found to 
perform poorly on consecutive days as in the case form day 4-8. Considering the entire 40-day period, the 
average model outperformed the baseline by 2.54%. 

The green line representing the “start_low” and the black line representing the “start_EOQ” model always 
outperform the baseline, and consistently the average scenario as well. It is somehow difficult to differentiate 
them in Figure 5.5, and when considering the entire 40-day period, the “start_low” model yields 5.35% savings 
while the “start_EOQ” model yields 6.39% savings compared to the baseline. Therefore, the “start_EOQ” model 
is found to be the optimal scenario and has been implemented in the capacity pre-booking service. 

 

Figure 5.5 Model performance on a 40day simulation 

 

5.3 EGTN Architecture Integration 

The combination of predictive models with smart contracts brings added value, as it enables a more efficient and 
smoother operation of the T&L workflow. By using the predictive models, the operator will know in advance the 
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number of extra bookings needed, while the use of smart contracts will allow for the automated generation of 
paperless contracts. This automated and ad-hoc trigger of smart contracts normalises the engagement of 
resources, reduces the overall operational costs, but also creates opportunities for the establishment of new 
relationships with freight forwarders. 

The number of truck bookings are calculated based on the number of outgoing pallets in the warehouse, which 
are predicted by the AI models in the context of T2.3. Using a historical dataset, as well as IoT data (depicting 
real-time trucks/cargo position and status) the models can perform rolling predictions. In this manner, 
continuous planning of future pallet quantities is based on historical data of the number of pallets. Past data 
(currently two years but to be investigated further) are used to create predictions for a rolling horizon of 10-
days.  

Taking all the above into consideration, the combined use of confidence intervals with a pricing strategy provides 
a dynamic solution for lower operational costs and a fair risk distribution between the service requestor and the 
service supplier. In this manner, the use of AI and Blockchain offer efficient and flexible services that enable the 
smooth and efficient coordination of different stakeholders across the supply chain. 

5.3.1 Business value 

The challenge of e-commerce growth increasing last-mile diversity and complexity, while simultaneously 
balancing fuel consumption, travel distance, traffic patterns or load capacity make the last mile difficult and 
costly for operators and push the logistics sector to continuously identify and embrace new trends. Predictive 
Logistics is finding strong adoption for industry professionals, given the abundance of supply chain data, as well 
as better machine-learning algorithms. The predictive capabilities of AI are helping logistics operators make 
precise decisions to proactively streamline operations thanks to the parallel progress of machine learning, 
computing power and big data analytics. As AI becomes more intelligent, predictive technology could take 
logistics players a step further by combining it with smart contracts and automating the truck booking process.  

Instead of waiting for customers to order, this solution goes beyond same-day or same-hour booking process by 
supplying a proactive booking model, not only improving customer service/satisfaction, but bringing competitive 
advantage through data-driven decision making and the shift towards a predictive AI-powered supply chain.  

The service utilises predictive capability and the output of confidence intervals in order to drive more efficient 
costing of trucking capacity. The solution reduces cost through a highly efficient and effective processes taking 
logistics players a step further into the territory of anticipatory booking model. This allows not only logistics 
providers but carriers and shippers to connect and determine cost-effective business models bringing a win-win 
situation to all parties by lowering cost, reducing management time and increasing business agility. In addition, 
the solution is highly scalable, and applicable to any logistics operation as it can be customized as per customer’s 
needs. 
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6 Conclusions 

 

The current report proposes PI services for transforming current T&L practices to the operational principles of 
the Physical Internet for three supply chain domains: 

1. Intercontinental corridor integration to PI Hubs 
2. Warehouse Operations for Physical Internet enabled hinterland transportation, and  
3. Last mile urban distribution 

The PI services designed and presented in this report, align with the PI principles and have been generalized to 
fit into the Physical Internet paradigm. In the context of intercontinental corridors, Port of Entry PI Hub clusters 
are considered, and utilizing information on the destinations of the PI containers on board a PI Mover, an optimal 
discharge PI Hub is identified for each container. In the context of hinterland transport, an automated capacity 
pre-booking solution is provided, that utilizing prediction confidence intervals and inventory replenishment 
theory, is found to deliver a 6.25% cost reduction for the tested OD pair. In the context, of last mile delivery, a 
dynamic parcel reshuffling algorithm is proposed, that can utilise early running vehicles to micro-consolidate 
cargoes and expedite deliveries, alleviating parcel returns to the distribution center due to delays. All services 
have been designed, to utilise multiple information sources, and network up-to-date status updates, integrate 
standardized encapsulation and smart decision making, and promote operator collaboration. 

A collaborative marketplace is proposed in the last mile logistics context, that utilises criteria identified during 
the MAMCA workshop, to characterize operators. In a collaborative marketplace setting, individual operators 
are then able to filter based on operator profiles that they would not like to collaborate with, for example further 
promoting collaboration to foster the utilization of sustainable transport modes.  

For all services presented in this report, a high-level context use case is provided. The services are designed for 
generic utilization, serving multiple use case needs. A service architecture is described, and where applicable a 
mathematical formulation of the DSS is provided. All proposed services integrate with EGTN databases to collect 
parameters for running the models, and up-to-date network status information. Furthermore, a detailed 
description is provided on the integration of the services with other EGTN services, such as: 

• The track and trace capability, for monitoring the location of a PI Mover, or the progress of delivery 
rounds in the last mile context 

• The knowledge graph capability that provides up-to-date information on the parcels included in each PI 
container on board a PI mover, therefore enabling establishment of a complete OD network in modelling 
PoE PI Hub choice. 

• The last mile routing capability 

• The predictive capability 

In all three contexts, the PI principles of improving on critical variables such as cost, utilisation rates, and 
emissions through improved multi-modal integration and open accessibility to static and mobile infrastructures 
are promoted through open and standardized interfaces, monitoring and data sharing, smart decision making 
and modularized encapsulation.  

.  
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