loader image
Skip to main content

Section outline

  • IPIC 2017 Contributions - Innovation paper

    • Supply chains with rather small volumes in a disperse network are rather fragmented. City logistics is an example, where Physical Internet is a real game changer in this type of business. Binnenstadservice Nederland B.V. is an advanced operator of anetwork of city hubs in the Netherlands. What has been missing is an IT tool which enables collaboration between involved stakeholders. Therefor the SaaS MixMoveMatch from MARLO has been implemented in 2016 to proceed fast planning of consolidation of shipments in the city hubs as well as the routing and delivery in the city distribution. MixMoveMatch also controls the various processes in the cross docking. Through easy to install standard interfaces data can be imported from the various suppliers and carriers who feed cargo into the hub. The operation in the hub and at the last mile can be done with only one solution and its device substituting the confusing variety of systems to be handled previously. Existing TMS and WMS can remain which keeps new investments to an absolute minimum. This approach enables in an economically feasible way a level of visibility and high quality distribution which hardly existed until now for small volumes of parcel shipments

    • The requirement for rapidly deployable medical capabilities, such as mobile hospitals, has been recognized from the time ofthe US Civil war to more recent occasions (Hoyle, 2004, Mohr et al, 2005)for military and non-military requirements. Hoyle(2004) describes the conversion of a semi-trailer to support readiness outside of Cincinnati, Ohio in the 1960s and Mohr et al., (2005, p. 91) describe a more modern and robust MED-1 which "is the nation’s first fully equipped mobile surgical hospital and consists of two 53-foot tractor trailers, one of which stores equipment and the other a fully functional patient care facility. The facility center morphs into a 1,000-square-foot workspace featuring a two-bed shock–resuscitation and surgical unit and a 12-bed critical and emergency care unit. MED-1 also includes materials for a climate-controlled tented area holding 130 additional beds". While effective in local and regional circumstances due to mounting on tractor trailers, they are currently less mobile if desired to support non-contiguous requirements, for instance during the recent Haiti earthquake, which required mobile military hospitals to beutilized (Pape et al., 2010, Kreiss et al., 2010). The ability to rapidly move a standardized and scalable medical package, capable of rapid expansion and replenishmentis critical.Potential barriers to adoption by Military-civilian and Humanitarian organizations are discussed.Future research opportunities are identified.

    • To develop and pilot the concept of hyper-connected modular and decentralized production, we should rethink Edison's vision of producing electricity on one's own. In other words, a PI-enabled Realization Web will be designed with self-supplied PI-facilities (nodes), which could form the micro-energy network with self-production, supply and utilization. This is a decentralized and hyper-connected renewable energy production network. This counters Westinghouse's idea to provide centralized electricity to nodes via transmission lines, which leads to the current conditions of electricity production using fossil fuels and hydro power. Although it is a better systemic outlook, it also leads to economic dilemma, environmental pollution and social problems.

      With the increasing demand for a sustainable lifestyle among the millennial generation, we believe that supplying electricity in a decentralized way will return gradually to the vision of its pioneer Edison. One of renewable energy's value propositions is its large reliance on decentralized operations, installation and distribution, which highly aligns with the Physical Internet founding principles. In this innovation paper, we have identified the decentralized solar energy production gap, adding on the modular and mobile micro-energy production to satisfy the needs of prosumers (producer & consumer) in the 21st century.


    • Standardized, smart and modular PI-Containers are key elements for an open global logistic system. The modularity provides composition capabilities to build composite PI-containers which allow efficient and easier handling or transport. In the same way, embedded technologies confer intelligence to each PI container. They become individual intelligent objects which can not only identify themselves, but can also sense and measure their environment, and communicate with others objects. From the collaboration of individual intelligences emerges the collective intelligence. This research paper proposes a collective intelligence approach for the management of composite PI-containers in key facilities such as PI-Hubs. The cognitive abilities of each PI-container, associated to a cooperative information aggregation mechanism, are used to generate a virtual object of the composite PI container. The latter makes possible to provision new services in accordance with the users/stakeholders’ requirements. A guidance information service for automated PI-container picking illustrates the proposed approach.

    • In logistics processes with increasing complexity and flexibility the use of wearable solutions can help to increase the efficiency and reliability of manual operation like order picking. With the proof of improving such processes by using wearables like Smart Glasses or a RFID Wristband at hand, the project AR-LEAN focusses on integrating these devices in a flexible wearable assistance solution. Supporting manual processes with such solutions will still be relevant in Physical Internet based environments, as manual handling will remain crucial in processes handling small PI containers. Besides describing the wearable solutions and their development, the paper discusses the relevance of such technologies in relation to smart PI containers.

    • Microzoning is a method which makes (last-mile) road transport more efficient and sustainable. The method generates small compact areas, called microzones, which can be used as building blocks to design efficient service zones. The innovative methodology uses a grid of an area, heuristic methods and routing algorithms to develop the service zones. Stakeholders’ preferences can be incorporated into the model to generate industry or company specific microzones. This methodology has been applied by Argusi during a project for a parcels delivery company located in the Netherlands to facilitate their last-mile transport.

    • The Physical Internet (PI) concept has many different connotations at various levels of business, from the strategic point of view of the company, the horizontal collaboration with other companies, down to the operational integration of the processes. Complexity reduces the sense of control in the logistics operation. These intricate relationships of PI make logistics flows more complex, but the final result from a point of view of resources is a more efficient and environmentally friendly process. This paper describes how the use of different types of analytical models and simulation models could help to create trust and confidence around the PI concept. The simulations help to analyse business models, to evaluate the relationship between the main variables, to visualize the flows, to understand the dynamics of the processes and to evaluate numerically the impact of the new flows of products.

    • Logistics in Brazil is very unsustainable, inefficient and precarious. Transport matrix, composed of 61% of highways, 21% of railroads and 14% of waterways, when at least 60% of this matrix should be anchored in railroads and waterways. Lack of investments in the logistics and multimodality network, as well as technological resources to facilitate the systematic arrangement among all the agents involved. The physical internet that adds concepts of an open global logistics system founded on physical, digital and operational interconnectivity through encapsulation, interfaces and protocols. The Physical Internet enables an efficient and sustainable Logistics Web that is adaptable, efficient, systemic and resilient. These features can answer for some Brazilian logistics problems. This paper reviews the main foundations and constituents of the physical internet theory in order to try to answer the main logistics problems that Brazil faces in trying to find possible solutions. In the end, it is concluded that, in fact, it is possible as long as the country creates investments for the infrastructure and technological resources, however, more studies can help in this matter.

    • One of the biggest challenges in the field of Physical Internet (PI) is the optimization of material flows within global transportation networks. Within such real-world logistics networks, complex problems with many restrictions have to be considered. As such problems are highly dynamic, standard formulations and algorithms of already known problem models are difficult to apply. Thus, it is necessary to develop new methods which allow a stable optimization of PI logistics networks. One solution approach is simulation-based optimization. Realistic models of real-world environments are created to be able to consider all complex restrictions. It has to be decided how simulation and optimization nodes work together and communicate with each other. These considerations have to be made due to the required coupling process between the simulation and optimization.
      This paper shows how the optimization of a PI problem is interrelated with its simulation. It is demonstrated how simulation is used to evaluate possible solution candidates of the optimization process. Furthermore, it is presented how the simulation uses the optimization algorithms to generate new feasible candidates. The developed solution approach is realized by using the frameworks HeuristicLab and Easy2Sim. HeuristicLab is used for optimization and Easy2Sim for simulation parts. Moreover, it is presented how simulation and optimization parts communicate with each other. Therefore, an interface for the exchange of data between the simulation and the optimization pars is implemented. As a result, components can be programmed in different languages and different data structures can be used.