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Abstract—Autonomous transport vehicles require robust solu-
tions to operate seamlessly across diverse weather conditions. The
EU-funded AWARD project (H2020) addresses this imperative
by presenting a hub-to-hub material transport solution. How-
ever, traditional satellite-based navigation (GNSS) encounters
limitations in severe weather and does not work well without
line-of-sight satellite connection. To enhance vehicle position
data acquisition at docking ramps, a stationary Ultra-Wideband
(UWB) localization system has been implemented. Our algorith-
mic approach explores four methods for estimating the vehicle’s
2D-pose, encompassing position and orientation, based on an
Extended Kalman Filter (EKF) for simultaneous estimation of
synchronization and localization states. Our measurement results
demonstrate that geometrically interlocking the tags and incor-
porating a vehicle motion model into the localization algorithm
significantly enhance estimation accuracy.

I. INTRODUCTION

The era of autonomous transport is upon us, ushering in a
transformative paradigm where vehicles navigate and operate
without human intervention. This cutting-edge frontier in
transportation promises increased efficiency, enhanced safety,
and a revolutionary shift in the dynamics of mobility.

The EU project AWARD H2020 (“All Weather Autonomous
Real logistics operations and Demonstrations”, [1]) aimed at
the roll-out of driverless transportation. The objective was to
implement a secure and efficient heavy-duty transportation
system for real-life logistics, capable of operating seamlessly
in all weather conditions. The project was focused on four
individual use cases: Forklift transportation in a warehouse,
transport of goods on an airport, container transport and
automated boat loading in a port, and hub-to-hub shuttle
service from a production site to a logistics hub. In hub-to-
hub scenarios, conventional sensor equipment for autonomous
driving may face challenges in severe weather conditions like
heavy rain or fog. Also, when the vehicle is (partly) under
a roof and does not have line-of-sight satellite connection,
GNSS accuracy may degrade. Especially in docking scenarios,
supplementing with a radio-based localization system can offer
additional safety.

Ultra-wideband technology (UWB, [2], [3]) provides
infrastructure-based position estimation of mobile tags within
a region bounded by a number of connected anchor nodes of
known position. UWB-localization accuracy typically lies in
the range of centimeters to tens of centimeters. Localization
of mobile tags is accomplished by continuous radio commu-
nication between tags and anchors and using measurements of

Fig. 1. Top view of UWB anchor and tag setup with coordinate systems.
Vehicle origin is the center point between the (unsteered) back wheels.

transmission and reception time stamps (time-of-arrival, ToA)
of exchanged data packets for estimation. Since clocks are lo-
cal to the individual anchors and tags and there is no hardware
synchronization, clock parameters must be estimated along
with the mobile tag locations. For this purpose, simultaneous
localization and synchronization algorithms [4]–[7] have been
developed.

In the proposed system, the positions of the tags and
the vehicle to be localized as well as clock parameters are
estimated using an Extended Kalman Filter (EKF) based on
an underlying state model. While this is a common choice in
localization [8], our approach does not require a specific packet
exchange schedule and relies solely on broadcast messages.
This greatly simplifies deployment and computation while
simultaneously providing accuracy achievable by round-trip
time of flight measurement (RToF). Furthermore, we use tag to
tag communication and geometric constraints to significantly
improve estimation results.

In this paper, we first illustrate the measurement setting
and the UWB system setup in Section II. We then describe
our localization algorithm in Section III. In Section IV, we
present and discuss the results of our measurements. Finally,
we conclude our paper in Section V.

II. MEASUREMENT SETUP

The UWB localization system has been installed at a
docking ramp on the premises of AWARD project partner
DB Schenker in Gunskirchen, Austria. It is based on Qorvo
DW1000 UWB hardware [9] and consists of anchor stations



Fig. 2. Setup of anchor stations in loading dock.

Fig. 3. Vehicle with tags mounted on top.

connected to a measurement PC via Power-over-Ethernet
(PoE). As shown in Figs. 1 and 2, a total number of KA = 9
anchors have been placed at fixed and known positions on
the walls of the hub building. Encased in weather-proof
housing, KT = 4 mobile tags have been mounted in a fixed
rectangular arrangement via magnets directly onto the metallic
transportation container carried by an autonomous transport
vehicle, as illustrated in Fig. 3. In the following, we will refer
to anchors and tags as units where no distinction is necessary.

As shown in Fig. 4, each unit transmits packets as broad-
casts with a slightly jittered repetition rate, and switches to
receive mode to listen for packets from other units when
it is not transmitting itself. This may lead to collisions and
therefore packet loss but requires no scheduling protocol,
which greatly simplifies deployment. In this application and
with the chosen configuration, the connectivity has been found
to be sufficient nonetheless. Each transmitted packet contains
the transmitter ID and an ascending packet number as well as
the time of transmission as measured in the local transmitter
clock. Upon reception by another unit, the time of arrival is
estimated in receiver clock time and added to the packet, along
with receiver ID. When a packet is received by an anchor, the
associated data is subsequently transferred to the measurement

Fig. 4. Exemplary timing of transmissions and receptions from/to anchors
and tags. Units are in receive mode when not transmitting, with some time for
switching between modes. Packet loss occurs e.g. due to collisions, obstacles
in the propagation path, or if the maximum measurement range is exceeded.

PC via Ethernet. To enable two-way measurements between
all units, wireless tags collect all received packets including
associated timestamps and transmit the contained information
as user data with their next transmission.

A 2D lidar system (SLAMTEC RPLIDAR C1 [10]) has
been positioned at the ramp and connected to the Measurement
PC. A continuous least squares fit of the container profile to
the measured point cloud provides vehicle pose ground truth
data for estimation error evaluation.

III. LOCALIZATION ALGORITHM

The localization algorithm is based on an EKF for simulta-
neous estimation of synchronization and localization states. It
also allows the pose estimation of rigid bodies on which tags
are mounted, so that fixed relative tag positions and a vehicle
motion model can be incorporated. Due to the asynchronous
communications protocol, there is no fixed discretization in-
terval in time. Instead, each packet is processed immediately
after it is received. The algorithm keeps an ordered backlog
of packets for a certain time so that out of sequence arrivals
lead to a reprocessing and update of the latest estimates.

In this work we will compare the results of vehicle pose
estimation using four different configurations (C1–C4):
C1: tags are free-floating;

tags only communicate with anchors, not with other tags
C2: tags are free-floating;

tags communicate with anchors and other tags
C3: tags have a rigid connection to the vehicle;

tags communicate with anchors and other tags
C4: tags have a rigid connection to the vehicle that moves

using a simple vehicle model;
tags communicate with anchors and other tags



While a detailed description of the algorithm is out of scope
of this work and is planned to be published in a subsequent
article, we will give a brief summary of the main points.

A. Indices

We will denote the index of receptions in order of arrival at
the localization algorithm by n (cf. Fig. 4). This is the order
of processing and therefore the time index of the EKF. The
transmitting (tx) and receiving (rx) units for packet n are kt,n
and kr,n, respectively. Furthermore, the unit-specific index of
tx or rx by each of these units at time n is denoted by mk

n,
and the total transmission index for reception n is mn. For
brevity we will use the abbreviations

kt ≡ kt,n kr ≡ kr,n

mt ≡ mkt
n mr ≡ mkr

n .

B. Input and state vectors

In our EKF implementation, we propagate states using
the time that has elapsed since the previous transmission or
reception (trx) as input uk,n. Measured in local time of each
unit (denoted by ·̃), we get the time differences for the tx ∆t̃kt

n

and the rx units ∆t̃kr
n between the current and the previous

packet from/to that unit

uk,n ≡
[
∆t̃kt

n

∆t̃kr
n

]
=

[
t̃kt
mt

− t̃kt
mt−1

t̃kr
mr

− t̃kr
mr−1

]
,

where t̃km is the local clock measurement of the mth tx or rx of
unit k. Note that for transmissions received by more than one
unit, ∆t̃kt

n becomes zero starting from the second reception.
In C1 and C2, the total input vector un = uk,n; in C3 and
C4, un =

[
uk,n ut,n

]T
, where ut,n will be defined in (1).

The unit state vector xk,n =
[
xk∈KA
n xk∈KT

n

]T
consists

of the assembled state vectors of all units k ∈ K = KA ∪KT,
where KA and KT are the index sets of all anchors and
tags, respectively. For anchors of known location, only syn-
chronization states xk

s,n must be estimated to account for
unsynchronized clocks, therefore xk∈KA

n = xk
s,n. In C1 and

C2, synchronization and location states xk
l,n are estimated for

individual mobile tags, i.e. xk∈KT
n =

[
xk
s,n xk

l,n

]T
, and the

total state vector becomes xn = xk,n. In C3 and C4, pose xl,n

is estimated for the vehicle instead of individual tags, which
makes xk∈KT

n = xk
s,n and xn =

[
xl,n xk,n

]T
.

In the prediction step, only states of the current packet’s
tx and rx units kt and kr are considered, while the others
remain unchanged. This allows for a particularly efficient
computation. Consequently, the state vector xk

n for each unit
represents the time of the last trx from that unit and is not
synchronous for all units. We therefore only actually output
unit states whenever this unit has a current trx. For tx with
multiple rx, state output occurs only after the last rx has been
received, which is the most informed estimate at this time.

The state transition equations for the vehicle and units k ∈
{kt, kr} are given below. As stated above, for k ̸= {kt, kr}
we have xk

n ≡ fk(xn−1) = xk
n−1.

C. Synchronization state transition

For synchronization, we use an affine clock model in which
we denote the current time at unit k by tkn, and the clock skew
by τkn . The state transition equation is

xk
s,n ≡

[
tkn
τkn

]
=

[
tkn−1 +

(
1 + τkn−1

)
∆t̃kn

τkn−1

]
︸ ︷︷ ︸

fks (xn−1,un)

+

[
δtkn
δτkn

]
︸ ︷︷ ︸
wk

s,n

with clock drift modeled as a zero-mean multivariate normal
distribution with covariance matrix Qk

s,n,

wk
s,n ∼ N

(
0,Qk

s,n

)
Qk

s,n =

[
1
3 (∆t̃kn)

3 1
2 (∆t̃kn)

2

1
2 (∆t̃kn)

2 ∆t̃kn

]
σ2
τ.

Here, we assume that δτkn follows a Wiener process so that
the variance of τ increases linearly in time with rate σ2

τ.

D. Location state transition

1) Configurations C1 and C2: Locations are estimated for
individual tags, their mounting on a rigid body is disregarded.
The difference between C1 and C2 is that in C1, packets with
mobile tags as transmitter and receiver are discarded before
evaluation. For location we use the constant velocity model

xk
l,n ≡

[
p̄k
n

v̄k
n

]
=

[
p̄k
n−1 + v̄k

n−1 ∆t̃kn
v̄k
n−1

]
︸ ︷︷ ︸

fkl (xn−1,un)

+

[
δp̄k

n

δv̄k
n

]
︸ ︷︷ ︸
wk

l,n

with plane position p̄k
n =

[
pkx,n pky,n

]T
, velocity v̄k

n =[
vkx,n vky,n

]T
, and position pk

n =
[
p̄k
n pkz

]T
in space

with constant pkz . Position and velocity variation δp̄k
n =[

δpkx,n δpky,n
]T

and δv̄k
n =

[
δvkx,n δvky,n

]T
are distributed

according to a zero-mean multivariate normal distribution with
covariance matrix Qk

l,n,

wk
l,n ∼ N

(
0,Qk

l,n

)
Qk

l,n =

[
I 13 (∆t̃kn)

3 I 12 (∆t̃kn)
2

I 12 (∆t̃kn)
2 I∆t̃kn

]
σ2
v,

since δvkx,n and δvky,n are modeled as independent Wiener
processes with variance rate σ2

v. I denotes the identity matrix.
2) Configurations C3 and C4: In configurations C3 and

C4, the vehicle pose—given by the position of the back wheel
center in the plane p̄n =

[
px,n py,n

]T
and angle about the z-

axis ϕn (cf. Fig. 1)—as well as velocity v̄n =
[
vx,n vy,n

]T
is

estimated while considering the relative tag mounting positions
˜̄pk =

[
p̃kx p̃ky

]T
on the vehicle. Individual tag locations are

calculated as pk
n =

[
p̄k
n pkz

]T
with constant pkz and

p̄k
n = p̄n +

[
cos(ϕn) − sin(ϕn)
sin(ϕn) cos(ϕn)

]
˜̄pk.

For pose propagation in these configurations we also require
the elapsed time since the last transmission, which is

ut,n ≡ ∆tt,n = ∆t̃kt
n + tkt

n−1 − t
kt,n−1

n−1 . (1)

Note that for pose propagation we do not strictly separate local
and estimated time intervals, but since τkn ≪ 1, this leads to
negligible error.



3) Configuration C3: In C3, the vehicle can move in all
directions in the plane, its motion equations are therefore given
as

xl,n ≡

p̄n

v̄n

ϕn

 =

p̄n−1 + v̄n−1∆tt,n
v̄n−1

ϕn−1


︸ ︷︷ ︸

fl(xn−1,un)

+

δp̄n

δv̄n

δϕn

 ,

︸ ︷︷ ︸
wl,n

Vehicle position δp̄n =
[
δp̄x,n δp̄y,n

]T
, velocity δv̄n =[

δv̄x,n δv̄y,n
]T

, and angle variation δϕn are distributed as

wl,n ∼ N (0,Ql,n) Ql,n =

[
Qpv,n 0
0 ∆tt,nσ

2
ϕ

]
Qpv,n =

[
I 13 (∆tt,n)

3 I 12 (∆tt,n)
2

I 12 (∆tt,n)
2 I∆tt,n

]
σ2
v

where σ2
v and σ2

ϕ are the velocity and angle variation rate of
independent Wiener processes, respectively.

4) Configuration C4: Vehicle motion is restricted so that it
only moves in wheel direction, i.e. there is no sideways motion
allowed. We therefore only have scalar velocity in vehicle x-
direction and the state transition becomes

xl,n =

p̄n

vn
ϕn

 =

p̄n−1 + ˜̄e(ϕn−1)vn−1∆tt,n
vn−1

ϕn−1


︸ ︷︷ ︸

fl(xn−1,un)

+

δp̄n

δvn
δϕn

 ,

︸ ︷︷ ︸
wl,n

with vehicle x-vector ˜̄ex(ϕ) =
[
cos(ϕ) sin(ϕ)

]T
, position

variation δp̄n as defined above, scalar velocity and angle
variations δvn and δϕn, respectively. Since we assume that
δϕn ≪ 1, i.e. only a slow change in angle w.r.t. the motion
forward and backward, we can model variation as

wl,n ∼ N (0,Ql,n) Ql,n =

[
Qpv,n 0
0 ∆tt,nσ

2
ϕ

]

Qpv,n =

 1
3c

2
ϕ∆t3t,n

1
3sϕcϕ∆t3t,n

1
2cϕ∆t2t,n

1
3sϕcϕ∆t3t,n

1
3s

2
ϕ∆t3t,n

1
2sϕ∆t2t,n

1
2cϕ∆t2t,n

1
2sϕ∆t2t,n ∆tt,n

σ2
v,

where we use the shorthand notation

cϕ ≡ cos(ϕn−1) sϕ ≡ sin(ϕn−1).

E. Observation

Since we have used the actual ToA measurements already
as system input, the observation model relates positions and
(predicted) trx times as

zm,n =

hm(xn)︷ ︸︸ ︷
tkt
n + δtkt

a − tkr
n + 1

c

√(
pkr
n − pkt

n

)T(
pkr
n − pkt

n

)
+ δtm,n︸ ︷︷ ︸

wm,n

= 0

with speed of light c, and UWB rx time measurement noise
wm,n ∼ N (0, σ2

m) with variance σ2
m. The tx antenna delay

δtka , is the elapsed time between timestamping the tx packet

and the actual tx. It is a hardware parameter individual to each
unit that can also be used as a state variable for calibration.

For stability reasons—estimation of the mean clock skew
1
K

∑K
k=1 τ

k
n is ill-conditioned—we (loosely) link the current

transmit time to system time ts,n at the time of packet arrival
at the measurement PC, which gives us another equation

ts,n︸︷︷︸
zs,n

= tkt
n︸︷︷︸

hs(xn)

+ δts︸︷︷︸
ws,n

with system time error ws,n ∼ N (0, σ2
s ) with variance σ2

s .

F. Extended Kalman filter
Using the input un, state xn, and system models as defined

above, our algorithm is based on a standard EKF formulation.
The predicted and updated states xn|n−1 and xn|n in step n
are normally distributed

xn|n−1 ∼ N
(
µn|n−1,Σn|n−1

)
xn|n ∼ N

(
µn|n,Σn|n

)
with means µ and covariance matrices Σ.

In the prediction step of the filter, we compute

µn|n−1 = f(µn−1|n−1,un)

Σn|n−1 = FnΣn−1|n−1F
T
n +Qn Fn =

f

dxT

∣∣
µn−1|n−1,un

In C1 and C2, transition f and covariances Q are

f =
[
fk∈KA
s fk∈KT

]T
fk∈KT =

[
fks fkl

]T
Qn = diag{Qk∈KA

s,n ,Qk∈KT
n } Qk∈KT

n = diag{Qk
s,n,Q

k
l,n},

where diag{·} denotes the block diagonal matrix and
Q

k ̸={kt,kr}
n = 0. In C3 and C4 we have

f =
[
fl fk∈K

s

]T
Qn = diag{Ql,n,Q

k∈K
s,n }.

In the update step, the innovation yn, its covariance Sn, and
Kalman gain Kn are

yn ≡
[
ym
ys

]
=

[
zm,n

zs,n

]
︸ ︷︷ ︸

zn

−
[
hm(µn|n−1)

hs(µn|n−1)

]
︸ ︷︷ ︸

h(µn|n−1)

Sn ≡
[
smm sms

sms sss

]
= HnΣn|n−1H

T
n +Rn

Kn = Σn|n−1H
T
nS

−1
n

and the state update becomes

µn|n = µn|n−1 +Knyn

Σn|n = (I−KnHn)Σn|n−1,

where

Hn =
dh

dxT

∣∣∣∣
µn|n−1

Rn = diag{σ2
m, σ

2
s }.

For outlier elimination, we reject packets with Mahalanobis
distance above a threshold, i.e. that do not meet y2

m

smm
≤ δy̆2max.

For evaluation in Section IV, we use the parameters

σ2
τ = 10 µs2

s2·s σ2
v = 0.01 m2

s2·s σ2
ϕ = 10.0mrad2

s2·s

σ2
m = 0.04ns2

s σ2
s = 0.01Ms2

s δy̆2max = 8.0.



IV. EXPERIMENTAL RESULTS

We performed a measurement with the vehicle starting from
the ramp and moving in positive x-direction. It stopped at
10 positions between 3 and 36 m to evaluate error statistics,
ground truth was taken from lidar data. The algorithm was
applied on recorded raw data in configurations C1–C4 to
ensure identical conditions. In C1 and C2, where individual tag
positions are computed, the vehicle pose was estimated in post-
processing by least squares fit to the tag location estimates.

Fig. 5 shows evaluation results for C1–C4 from top to
bottom. As a qualitative conclusion, estimates are similar for
all configurations close to the loading dock, and degrade as
the vehicle moves away. This is a consequence of lower
accuracy measurements due to reduced signal power as well
as geometric dilution of precision. In C1, for large x-values,
tag position estimates completely diverge. Hence, there is no
meaningful estimate of vehicle position possible, which shows
as an arbitrarily rotating vehicle outline in the top right corner.
Quantitative statistical results for the pose estimation errors in
position δx, δy, and angle δϕ that confirm these observations
are shown in Fig 6. More specifically, in the best configuration
C4, the median error δx stays below 19 cm, with an inter-
quantile-range (IQR) below 12 cm. The median error δy grows
from about 5 cm to a little under 1 m, with IQR under 6 cm,
and the angle error δϕ varies in median between −4.7◦ and
2.4◦ with a maximum IQR of 1.0◦.

We conclude that adding measurements and geometric con-
straints from C1 to C4 improves the results considerably. Even
though the only difference between C1 and C2 is that packets
exchanged between mobile tags are also used, this leads to
more closely related individual tag position estimates. By in-
cluding these packets (that generally have good connectivity),
the ranges—and hence the relative positions—are implicitly
calculated. Also, there are additional measurements available
for tag synchronization, which leads to overall improvement.
Mounting the tags on a rigid body whose pose is estimated
in C3 leads to completely coordinated tag motions, even more
than in C2. Errors seen in C1 such as diverging individual
tag estimates are completely eliminated. As the vehicle x-
coordinate increases, accuracy and precision in y-direction
generally decrease more than in x, which is expected given the
geometric arrangement of the anchors in a ToA-based setup.
Therefore, restricting sideways motion of the vehicle in C4
greatly improves the results mainly in y-direction.

Remaining errors may have different sources that cannot be
entirely quantified. Tags are directly mounted on a metallic
container with ribs for reinforcement (cf. Fig. 3) that act as
many potential points for RF signal reflections, thus leading
to multipath propagation. Furthermore, we formulated a plane
estimation problem, which is not strictly fulfilled. Uneven road
surface and the possibility of the vehicle container to shift in
height by some centimeters are most problematic when the
vehicle is close to the anchors. Uncertainties in anchor position
measurement as well as in ground truth assessment by the lidar
sensor also add to evaluation error.

Fig. 5. Top view of evaluation results in C1 (top) to C4 (bottom). Anchor
positions are marked with green squares. Colored lines show tag position
estimates from which vehicle poses are derived. Estimated vehicle (container)
outlines and vehicle origin positions are shown as gray rectangles and dots,
respectively. Black rectangles and dots indicate lidar ground truth.

V. CONCLUSIONS

We have introduced an UWB localization system used for
operations at a logistics hub and shown its applicability in
a real-world measurement scenario. An EKF-based algorithm
for simultaneous localization and synchronization using broad-
cast packets was presented. Its unique features are the use of
time differences between consecutive packets as system input,
which allows for a simple unscheduled messaging protocol,
and the incorporation of geometric constraints, which has been
shown to significantly improve results. Even at a distance of
more than 20 m from the nearest anchor in an unfavorable
geometric constellation, the vehicle pose estimate in the best
configuration shows good agreement with the ground truth.
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Fig. 6. Statistics of estimation error δx, δy, and δϕ (left to right) in configuration C1–C4 (top to bottom) for the 10 static positions along the x-axis between
3.47 and 35.11 m. Median value is plotted as solid, 25 % and 75 %-quantiles as dashed, and minimum/maximum values as dotted lines.
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