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Abstract: This paper presents a route delivery planning and simulation module that forms a 

core part of the ICT Platform of the H2020 SENATOR project, which aims to enhance the 

sustainability of cities by developing a new urban logistic model. The module utilizes AI-based 

optimization algorithms to support the matching of supply and demand, identify the best fleet 

mix, and estimate the best delivery route based on real-time conditions. It also allows last-mile 

delivery planning using different transport modes, inter-modality, and driving restrictions, and 

simultaneously optimizes different performance indicators. The paper provides a detailed 

description of the AI-based optimization method and the architecture and components of the 

software module. Finally, the software module is validated in two scenarios (current operations 

and implementation of a Low Emission Zone) using real shipment data from a postal operator 

company in the living lab that the SENATOR project is implementing in Zaragoza. 

Keywords: last-mile logistics, vehicle routing problem, optimization, dynamic planning, multi-

modal, collaborative delivery.  

Conference Topic(s): distributed intelligence last mile & city logistics; PI modelling and 

simulation; technologies for interconnected logistics (5G, 3D printing, Artificial Intelligence, 
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collaborative decision making) 

Physical Internet Roadmap (Link): Select the most relevant area(s) for your paper:☐ PI 
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1 Introduction 
 

The growth of last-mile logistics is a continuous trend, driven mainly by urbanization and 

changes in consumer behaviour. The surge in online retailing, e-groceries, and e-commerce has 

contributed to this phenomenon (European Commission, 2023). This trend has resulted in an 

increase in freight traffic in urban areas, which negatively impacts the sustainability and 

livability of our cities. The additional traffic generated by vehicles for deliveries leads to 

congestion and emissions, with CO2 accounting for 25% and PM and NOx accounting for 30-

50%. Furthermore, heavy vehicles also reduce road safety (European Commission, 2020). On 

top of that, the COVID-19 pandemic has further accelerated the growth of online purchasing 

and logistic innovations(DHL, 2023). However, despite efforts to improve logistics 

sustainability, the challenges of the entire process are still subject to debate. Nevertheless, new 

technologies, processes and distribution strategies offer significant potential for enhancing the 

impact of last-mile deliveries in urban areas.  

mailto:fajardo.jenny@deusto.es
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With these challenges in mind, the SENATOR project1aims to create a new urban logistic 

model for enhancing the sustainability of cities. For this purpose, the project will develop a 

smart network operator, as a control tower supported on an ICT Platform that will work as a 

support tool for decision-making, integration and planning of all logistics operations. In 

consequence, it will minimize the negative impacts that this distribution causes in the cities and 

will constitute an effective means of collaboration between agents (citizens, operators, carriers, 

and administrations). 

 

The objective of this paper is to present one of the core parts of the mentioned ICT Platform. 

Concretely, the route delivery planning and simulation module whose aim is to support the 

matching of supply (vehicle, transport operators, etc.) with demand; to identify the best fleet 

mix (e.g. fuel, electric or zero-emission vehicles, cargo-bikes) to fulfil the customer demands 

while reducing pollution; and estimate the best delivery route according to real‐time or 

historical traffic conditions (e.g. traffic congestion, etc.), to avoid the overlapping between 

different logistic/transport operators routes when possible to reduce traffic, and to overcome 

unexpected events that might arise, such as traffic disruptions or vehicle breakdowns thanks to 

the AI‐based optimization algorithms. Furthermore, to show the capabilities of the software 

module, we validate it in a real scenario using shipment data from a postal operator company 

in the living lab that the SENATOR project is implementing in Zaragoza. The first scenario is 

based on the current operations of the postal operator, whereas the second one is based on the 

implementation of a Low Emission Zone in the city centre of Zaragoza. 

 

The rest of the paper is structured as follows. Section 2 reviews other tools currently available 

that are similar to the one presented in this paper. Then, Section 3 is devoted to describing the 

AI-based software module for collaborative logistics. After that, the experimental setup and the 

results obtained by the system presented are detailed in Section 4. Finally, the main conclusions 

gathered from this paper a discussed in Section 5. 

2 Related work 
 

This section discusses various tools available for solving the Vehicle Routing Problem (VRP), 

that are similar to the one presented in this paper and provides a comparison among them.  

 

• JSprit2 is an open-source VRP engine written in Java and uses a generic Ruin & 

Recreate metaheuristic. It can solve different VRP variants, including Capacitated VRP, 

Multiple Depot VRP, VRP with Time Windows, VRP with Backhauls, VRP with 

Pickups and Deliveries, VRP with Heterogeneous Fleet, and Time-dependent VRP.  

• OR-Tools3 is an open-source software suite for optimization, tuned for tackling hard 

problems in vehicle routing, flows, integer and linear programming, and constraint 

programming. OR-Tools includes a specialized routing library to solve different types 

of node-routing problems, such as TSP, VRP, CVRP, VRPTW, VRP with Resource 

Constraints, and VRPPD.  

• VROOM4: VROOM is open-source software written in C++ for solving vehicle routing 

problems. VROOM can solve several types of VRPs, including TSP, CVRP, VRPTW, 

MDHVRPTW, PDPTW, and a mix of these types. 

 
1 https://www.senatorproject.eu/  
2 https://github.com/graphhopper/jsprit/tree/master/docs  
3 https://github.com/google/or-tools  
4 https://github.com/VROOM-Project/vroom  

https://www.senatorproject.eu/
https://github.com/graphhopper/jsprit/tree/master/docs
https://github.com/google/or-tools
https://github.com/VROOM-Project/vroom
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• VRP Service from ArcGIS5 is a commercial service developed by ESRI to address 

different routing problems. It can be accessed in different ways such as JavaScript APIs 

and SDKs in different programming languages. 

• Circuit6 is a commercial tool available on web service, Android and iOS platforms, that 

allows the optimization of up to 1000 stops considering stop time windows, first and 

last stop, and priority levels. Its main use cases are Driver Tracking, Local Delivery, 

Route Planning, Proof of Delivery, and Courier Management. 

• LOCUS7 is a commercial tool that allows the planning and optimization of routes and 

vehicle assignation for orders considering problems such as Travelling Salesman, 

Vehicle Routing and Knapsacking. LOCUS implements exact, heuristic, and hybrid 

algorithms. Its main use cases are Last-Mile Delivery Routing, Field Service Dispatch 

Planning, Dynamic Route Planning and Optimization, Territory-Based Route Planning, 

and Reverse/Returns Logistics. 

• OptaPlanner8 is an open-source tool developed in Java that implements several 

optimization problems, including VRP, Capacitated VRP, and VRP with Time 

Windows. It also allows integration with Google Maps and OpenStreetMap.  

• HERE9 is a commercial tool that provides a route planning API to solve the VRP, 

implementing the Capacitated VRP, VRP with Time Windows, Multi-Depot VRP, 

Open Vehicle Routing, Heterogeneous or Mixed Fleet VRP, and Pickup and Delivery 

VRP. It allows the calculation of routes using real-time and historical traffic information 

and the re-planning of routes in real time if new orders appear. 

• GraphHopper10 is an open-source software tool developed in Java that uses JSprit as 

the route optimization engine. It provides an API to solve a variety of vehicle routing 

problems, including the Traveling Salesman optimization problem, and all the VRP 

variants implemented in JSprit. Its main advantages are the possibility of designing 

vehicle types and defining time windows and service times for drivers. 

 

However, none of the tools discussed above offer at the same time the functionalities of 

dynamic route optimisation, multi-modal fleet optimisation, inter-modal and/or transfer route 

optimisation, multi-objective optimisation and consideration of driving constraints. 

3 Artificial Intelligence based software module for collaborative 
last-mile logistics 

 

The software module for collaborative last-mile logistics is based on the well-known Rich 

Vehicle Routing Problem (Lahyani, Khemakhem, & Semet, 2015) which is a class of 

optimization problems that represent some or all aspects of a real-world application of vehicle 

routing including optimization criteria, constraints, and preferences. These problems deal with 

more realistic optimization functions, uncertainty, and dynamism, along with a wide variety of 

real-life constraints related to time and distance factors, and the use of heterogeneous fleets. 

Specifically, this software module internally implements a more realistic and complex model 

of the Rich Vehicle Routing Problem than those currently available in the literature as it can 

simultaneously incorporate the following aspects: 

 
5 https://desktop.arcgis.com/es/arcmap/latest/extensions/network-analyst/vehicle-routing-problem.htm  
6 https://getcircuit.com/  
7 https://locus.sh/  
8 https://www.optaplanner.org/  
9 https://developer.here.com/products/tour-planning  
10 https://github.com/graphhopper/graphhopper  

https://desktop.arcgis.com/es/arcmap/latest/extensions/network-analyst/vehicle-routing-problem.htm
https://getcircuit.com/
https://locus.sh/
https://www.optaplanner.org/
https://developer.here.com/products/tour-planning
https://github.com/graphhopper/graphhopper
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• Dynamism: given that some elements of the delivery planning may change over time, 

the software module allows the re-adjustment of the planning (e.g. last-minute orders 

that may appear, a vehicle breaks down and it is necessary to assign orders to other 

routes) 

• Multi-modality: the module allows last-mile delivery planning using different 

transport modes (e.g. walking, bikes, motorbikes, vans, etc.). 

• Inter-modality: the software allows that one shipment can be transported by different 

transport modes along its route between the depot/pick-up location and the destination. 

• Multi-objective: the module deals with the simultaneous optimization of different 

performance indicators (e.g. distance, time, emissions, etc.) 

• Driving restrictions: the component allows the modelling of areas with access 

restrictions to specific vehicles (e.g. pedestrian zones, low emission zones, etc.) 

 

In order to solve this highly complex Rich Vehicle Routing Optimization model, a specific sort 

of Artificial Intelligence techniques has been used. Concretely, we have used metaheuristics 

(Potvin & Gendreau Jean-Yves, 2019) because of their high efficiency and efficacy for this type 

of problem (Goel & Bansal, 2019). In a more specific way, the optimization algorithm designed 

is a hybrid metaheuristic(Gu, Cattaruzza, Ogier, & Semet, 2019) based on Large 

Neighbourhood Search (Pisinger & Ropke, 2019). 

 

In the following subsections, we will describe the Artificial Intelligence-based resolution 

algorithm and the architecture of the software module.  

3.1 Artificial Intelligence-based resolution algorithm 
 

The Large Neighborhood Search (LNS) algorithm was employed in the resolution of the 

presented module, utilizing a metaheuristic in which the neighbourhood of a solution is 

implicitly defined through the use of destroying and repairing operators. The destroy operator 

eradicates a portion of the current solution, while the repair operator reconstructs the destroyed 

solution. The destroy method is usually implemented with some degree of randomness to 

modify different aspects of the current solution in order to explore the solution search space. 

LNS employs a larger neighbourhood exploration technique compared to other classical local 

search metaheuristic algorithms. The algorithm is a hybrid metaheuristic that combines various 

destruction and solution construction operators (ruin and recreate), as well as strategies to 

accept or reject solutions. Consequently, it is also integrated into numerous libraries related to 

the vehicle routing problem. 

 

The optimization procedure pursued by the module is a stochastic approach based on the ruin 

and recreate (R&R) operator and can be summarized as follows: 

 

1. Initiate the process with an initial feasible configuration. 

2. Choose a ruin and recreate mode, i.e., a technique that will “destroy” the solution 

configuration, as well as the technique that will reconstruct the configuration. 

3. Determine the number of nodes to be removed. 

4. Ruin & Recreate. Generate a new solution using the heuristics selected in step 2. 

5. Decide whether to accept the new solution based on a decision rule (Simulated 

Annealing, Threshold Accepting Criteria, etc.). If accepted, proceed to (2) using the 

new solution; otherwise, restart with (2) using the previous configuration. 
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3.2 Architecture and Components 
 

The architecture of the proposed module is based on the distinct responsibilities and 

functionalities of its various components, each with its own distinct behaviours.  It depicts the 

different components and their relationships. Certain components serve a specific purpose and 

have been designed to consolidate the optimization model. Within the optimization engine, 

several sub-modules are present: 

 

• Data Processing: This module is responsible for processing all input data and 

translating it into the data structures utilized by the algorithm. 

• LLs Services: This module is responsible for managing the different constraints and 

intricacies of the optimization model that must be associated with each use case. 

• Output Solution Processing: This module is responsible for generating the output 

solution of the optimizer. Here, different key performance indicators (KPIs) that enable 

the evaluation of the solution are obtained. 

 

The general module that encompasses the optimization engine is primarily responsible for 1) 

integration with the API-REST and all services;  2) the optimization engine that loads all data 

and creates the problem; 3) the integration with the JSprit framework; and 4) the processing the 

algorithm's solution to obtain the output API-REST. 

 

 
Figure 1 Architecture and components of the proposed module 

Moreover, a JSprit module has been developed that bears the following responsibilities: 1) it 

contains the framework that implements the VRP problem, which has been modified to adapt 

to the dynamic delivery planning optimization model; 2) the primary modifications were made 

in the modelling of the constraints, operator strategies, and the computation of the fitness 

function. 

 

A subsystem that is accountable for optimization has been developed based on specific tasks 

and requirements in the proposed model for each use case. Input data and the obtained solution 

will be stored in a database, which can be accessed through the API-REST. From the dynamic 

planning model for optimization, a last-mile route planning for different vehicles will be 

obtained, optimizing the use of available resources. 
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4 Experiments and Results 
 

In order to validate the results of the system presented in this article, we have designed two 

scenarios: Scenario 1) which reflects the current operations of a real postal operator in the 

city of Zaragoza, and Scenario 2) which corresponds to the implementation of a Low 

Emission Zone in the centre of the city of Zaragoza. In addition, for each of the scenarios 

considered, three different fleet compositions have been simulated in terms of vehicle 

electrification ratio, with the aim of showing the capabilities of the tool for measuring the 

impact that different levels of fleet electrification would have on the two scenarios defined.  

 

Below we provide more details about the experimental framework designed and the results 

obtained for the two scenarios designed and the alternative fleet compositions 

4.1 Experimental framework 
 

This section aims to define the two scenarios considered for the validation of the route 

optimisation software module, as well as the different fleet compositions considered in the 

experimentation. 

4.1.1 Scenario 1: Baseline Scenario 
 

Scenario 1 reflects the current situation of postal operations in the urban area of Zaragoza, 

where the following infrastructure is in place: A) Nine Delivery Units (DUs) distributed 

throughout the city and dedicated to the delivery of postal items and small parcels. Most of the 

routes are done by postmen/postwomen on foot; B) Two Special Service Units (SSU) that are 

located in the northern and southern areas of the city, respectively. They specialise in the 

delivery of larger parcels and therefore all routes are done with a motorised vehicle. 

 

Figure 2 A) shows the distribution of the DUs and SSUs in the city of Zaragoza.  As for the 

operation of the routes, the postal operator works in two shifts, one in the morning and one in 

the afternoon. The morning shift runs from 7:00 am to 3:00 pm, while the afternoon shift runs 

from 3:00 pm to 10:00 pm. Since postmen need time at the beginning of the shift to sort and 

prepare the items to be delivered and at the end of the shift to dispose of undelivered items, the 

time slots in which postmen run their delivery routes are from 8:00 am to 2:00 pm in the 

morning shift, and from 4:00 pm to 9:00 pm in the afternoon shift. As for the demand data, for 

the purpose of analysis, we have chosen the data on deliveries made by the postal operator on 

13 and 14 September 2022, which we show in Table 1 as distributed by day and by shift. 

4.1.2 Scenario 2: Deployment of a Low-Emission Zone 
 

The second scenario we have defined for this analysis considers the deployment of a Low 

Emission Zone in the historic centre of the city of Zaragoza, whose delimitation is shown in 

Figure 2 B). The deployment of this Low Emission Zone implies that polluting vehicles cannot 

enter the area between 7 am and 11 pm. This would affect postal operations in the area since 

combustion vehicles would not be able to access the zone for delivery. Only 

postmen/postwomen on foot or electric vehicles would be able to deliver items to the designated 

area. The percentage of the orders that would be affected by the Low Emission Zone is shown 

in Table 1. As can be seen, the percentage of orders falling within the Low Emission Zone 

ranges between 9% and 15% depending on the shift and the day. 
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A)                                                                   B) 

Figure 2 – A) Image of the area of study for the Zaragoza Scenario 1 and location of the DUs and SSUs, and B) Delimitation 

of the area considered for the deployment of the Low Emission Zone in Zaragoza 

Day Working Shift Number of 
Shipments 

% of shipments in the 

Low Emission Zone 

Sept 13, 22 Morning 11723 15% 

Sept 13, 22 Afternoon 3794 9% 

Sept 14, 22 Morning 11429 15% 

Sept 14, 22 Afternoon 4296 13% 
Table 1 Number of shipments per day and shift, and percentage of shipments in the Low-Emission Zone in each zone 

4.1.3 Alternative fleet compositions 
 

As mentioned before, have defined three different fleet compositions in terms of fleet 

electrification in order to understand what impact it may have in environmental and operational 

terms. The three fleet compositions considered are as follows: 

• Current fleet composition: in this alternative, the fleet has the same composition as 

the current postal operator fleet shown in Table 2. 

• Electrification 50%: in this case, a fleet electrification of around 50% is considered, 

following the same composition in terms of vehicle typology. 

• Electrification 100%: in this last alternative fleet composition, 100% electrification is 

considered, i.e., all vehicles in the fleet are electric. Similar to the previous case, the 

typology of the vehicles is maintained with respect to the current composition. 

 
Vehicle Type Technology Current composition Electrification 50% Electrification 100% 

Large Van Combustion 9 9 - 

Large Van Electric - - 9 

Motorcycle Electric 12 27 27 

Small Van Combustion 37 15 - 

Small Van Electric 2 24 39 
Table 2 - Number of vehicles per type and technology for each of the fleet composition alternatives 

4.2 Result analysis 
 

In this section, we will analyse the results obtained by the software module presented in the 

two scenarios defined and for each of the fleet compositions. For this analysis of the results, 

we will consider the indicators shown in Table 3, which are provided by the route 

optimisation system presented in this article. In the two following subsections, we discuss the 

results obtained in each of the scenarios. More details about the calculation of the indicators 

can be found in (Vincenzo et al., 2022). 
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Impact area Criteria Indicator Data/unit 

Environment & 

Society 

Air quality CO concentration g/day 

SOx concentration g/day 

NOx concentration g/day 

NH3 concentration g/day 

PM10 concentration g/day 

GHG emissions CO2 g/day 

CH4 g/day 

N2O g/day 

Social costs Social costs of air quality and GHG emissions €/day 

Transport &  

mobility 

Accessibility Number of  shipments  n./day 

Number of  routes n./day 

Total km covered (including walking) km/day 

Total km covered by green modes (including 

walking) 

km/day 

Total veh-km covered by freight vehicles Veh-km/day 

Total veh-km covered by green freight vehicles Veh-km/day 

UFT vehicles Vehicle utilisation factor %/day 

Operative costs Fixed costs €/day 

Running costs €/day 

Capital costs €/day 

Table 3 Indicators considered for the analysis of results 

4.2.1 Results for Scenario 1 
 

Table 4 shows the results for scenario 1 with the different fleet compositions. As can be seen, 

with the current fleet having a high percentage of conventional vehicles, the environmental 

impact is high, reaching a social cost of more than €17,75 per day. However, by increasing the 

electrification of the fleet, emissions are reduced by around 85%, as is the social cost. This more 

than 50% increase is due to the fact that the postal operator fleet is oversized to cope with peak 

demand. Therefore, with 50% of the current fleet electrified, emissions would be reduced by 

85% in periods of intermediate demand. With 100% electrification of the fleet, as expected, the 

environmental impact is reduced by 100%.  

Furthermore, as we can see and as expected, the impact in terms of operations is nil as in all 

cases the same service levels are maintained.  However, in terms of operational costs, the 

electrification of the fleet implies a slight increase in fixed costs and mainly in capital costs 

(60%), due to the higher price of electric vehicles. On the positive side, however, running costs 

would be reduced by 40%.  

4.2.2 Results for Scenario 2 
 

The results of scenario 2 for the implementation of a Low Emission Zone are shown in the 

table below.  If we look at the environmental impact of the different levels of electrification, 

we see that the results are very similar to those of the previous scenario, as is to be expected.  

Where we do see some differences is in the number of shipments delivered, which increases 

by around 1% with higher electrification of the fleet, which is the same as the decrease in the 

number of shipments delivered when compared to scenario 0 for the current postal fleet. This 

1% increase is due to the fact that with increased electrification of the fleet, more vehicles can 

access the Low Emission Zone and therefore deliver more parcels. 
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 Scenario 1 Scenario 2 

Indicator Fleet Compositions Fleet Compositions 

Current 

Comp. 

50% 

Electric 

Vehicles 

100% 

Electric 

Vehicles 

Current 

Comp. 

50% 

Electric 

Vehicles 

100% 

Electric 

Vehicles 
CO concentration  152,58   11,01  0,00   144,58   11,01  0,00  

SOx concentration  1,00   0,14  0,00   0,97   0,14  0,00  

NOx concentration  589,18   108,37  0,00   566,32   108,36  0,00  

NH3 concentration  2,90   0,40  0,00   2,82   0,40  0,00  

PM10 concentration  27,83   4,90  0,00   26,52   4,90  0,00  

CO2  197.936,30   27.555,43  0,00  190.998,58  27.553,29  0,00  

CH4  14,68   1,21  0,00   13,80   1,21  0,00  

N2O  11,64   1,97  0,00   11,34   1,97  0,00  

Social costs of air quality and 

GHG emissions 

 17,75   2,48   0,00   17,13     2,48    0,00      

Number of  shipments   8.873,60   1.240,12  0,00  14.930,00  15.058,50  15.107,50  

Number of  routes  15.106,00   15.083,50   15.107,50   208,00   206,00   207,00  

Total km covered (including 

walking) 

 208,00   206,00   207,00  2.695,79  2.703,98  2.722,50  

Total km covered by green 

modes (including walking) 

 2.722,30   2.702,36   2.722,50  1.418,84  2.519,88  2.722,50  

Total veh-km covered by 

freight vehicles 

 1.390,51   2.518,24   2.722,50  1.657,42  1.665,62  1.684,14  

Total veh-km covered by 

green freight vehicles 

 1.683,94   1.664,00   1.684,14   380,47  1.481,52  1.684,14  

Vehicle utilisation factor  0,33   0,33   0,33   0,32   0,33   0,33  

Fixed costs  24.612,49   24.683,48   25.008,18  24.328,19  24.659,85  25.008,18  

Running costs  187,99   112,47   106,57   184,26   112,59   106,57  

Capital costs 1.154.800  1.507.800 1.842.800  1.198.800 1.507.800 1.842.800  

 
Table 4 – Results for Scenario 1 and Scenario 2 

5 Conclusions 
 

In this paper, we have presented a route delivery planning and simulation module that forms a 

core part of the ICT Platform of the H2020 SENATOR project. The module utilized AI-based 

optimization algorithms to support the matching of supply and demand, identify the best fleet 

mix, and estimate the best delivery route based on real-time and historical conditions. It also 

allows last-mile delivery planning using different transport modes, inter-modality, and driving 

restrictions, and simultaneously optimizes different performance indicators. We have also 

provided a detailed description of the AI-based optimization method and the architecture and 

components of the software module. Furthermore, the software module has been validated in 

two scenarios using real shipment data from a postal operator company in the living lab that the 

SENATOR project is implementing in Zaragoza. 

 

The main conclusions from the two scenarios analysed and simulated with the presented tool 

are the following. In scenario 1, it is found that increasing the electrification of the fleet results 

in a significant reduction in emissions and social costs, with 100% electrification reducing the 

environmental impact by 100%. However, there is a slight increase in fixed and capital costs 

due to the higher price of electric vehicles. In Scenario 2, the results show that the 

environmental impact reduction of fleet electrification is similar to Scenario 1. However, there 

is an increase in the number of shipments delivered with higher electrification of the fleet due 

to higher access to the Low Emission Zone. 
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Overall, the presented tool has shown that increasing the electrification of the fleet is an 

effective way to reduce the environmental impact of postal operations, with the added benefit 

of increased access to Low Emission Zones. The drawbacks found by the tool are that there 

may be some additional costs associated with electrification. 

 

In short, these results have validated that the presented tool is novel and that it allows the 

optimisation and simulation of last-mile logistics considering different elements of high 

relevance nowadays such as fleet electrification or the implementation of low-emission zones. 

More details about the results of the algorithm in other scenarios and using real data from the 

city of Dublin can be found in (Vincenzo et al., 2022) 
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