

A Modular and Flexible Hyperconnected Assembly Factory Design

Speaker: Wencang Bao¹

Authors: Wencang Bao¹, Leon McGinnis^{1,2}, Miguel Campos¹,

Zhihan Liu¹, Julien Maurice¹, Benoit Montreuil¹,

Sevda Babalou^{1,3}

- 1. Physical Internet Center, Georgia Institute of Technology, Atlanta, USA
- 2. Keck Virtual Factory Lab, Georgia Institute of Technology, Atlanta, USA
- 3. Building Information Modeling, Product & Process Innovation, MiTek, Inc, Atlanta, USA

Contents

- Introduction of Hyperconnected Assembly Factories
- Balancing Multi-manned Mixed-Model Assembly Lines with Parallel Workstations and Variable Task-Resource Options
- Balancing Paced Multi-manned Assembly Lines where Workers Travels Allowed within A Takt Time
- Mixed-Model Sequencing and Worker Scheduling
- Conclusion and Future Work

Chapter 1

Introduction of Hyperconnected Assembly Factories

Introduction: Challenges in Assembly Industry

Scalability

 maintain good performances (e.g., cost per product, product travel distance in facilities, waiting time) when demand increases and decreases

Product Variety

respond to different product variants quickly and cheaply

Reconfigurability

o add, remove, replace, or redeploy equipment swiftly and inexpensively

Environmental Sustainability

o include reducing resource waste and decreasing carbon footprint in product transportation

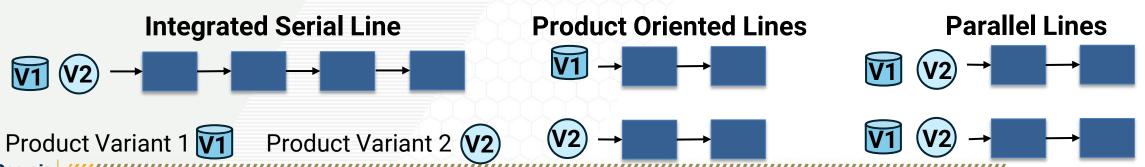
Introduction: Assembly and Layout Organization

Assembly

o a type of manufacturing process that combines components into final products

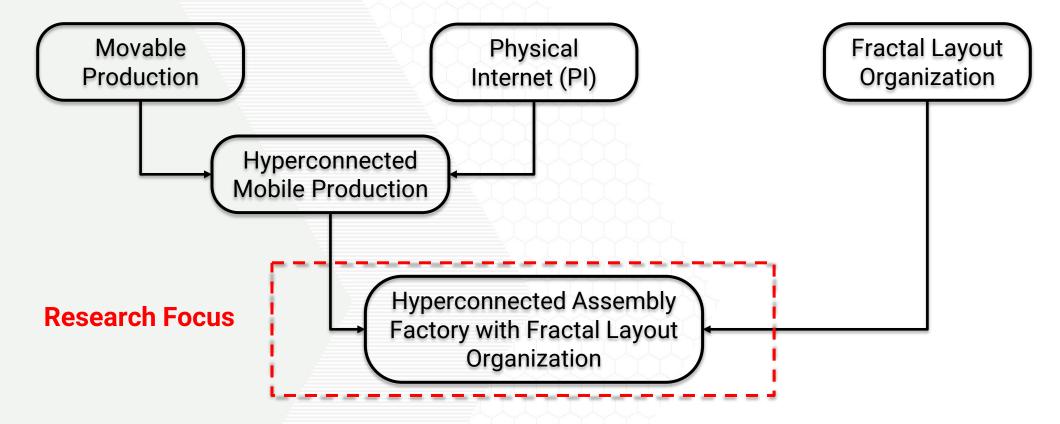
Task

- o a subdivision of assembly work of products
- o typically, assembly tasks are allocated to a set of workstations
- workstations are linked by specific product flows


Takt Time

- o the time interval between two consecutive launches of production
- synchronizes product and material flows among workstations

Layout Organization


- o the pattern of how stations are organized, and how products and materials flow among stations
- o impacts task-station assignment, product/material flows, production schedule, etc.

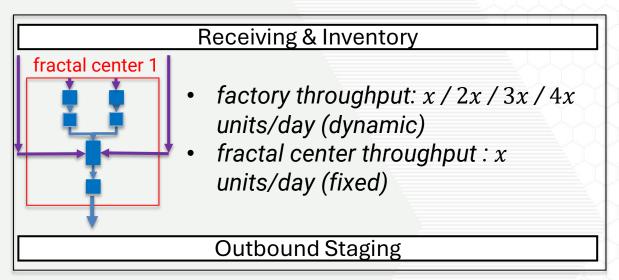
Examples for Layout Organizations

Related Literature

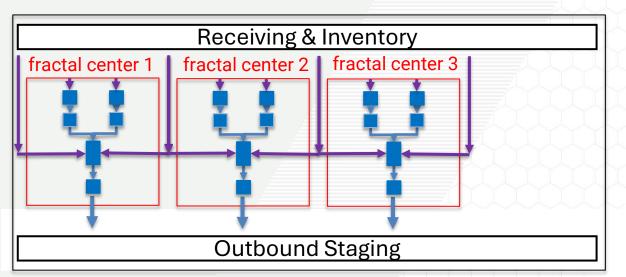
Georgia

Hyperconnected Assembly Factory with Fractal Layout Organization:

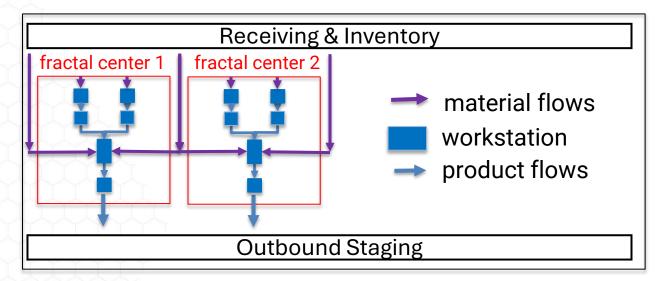
- Movable production ([1],[4]) realized by flexible production systems ([2],[3],[9],[10],[12],[16])
- Physical Internet ([5],[6],[7],[8],[14]) promotes sharing equipment in the open and certified assembly factory network
- Fractal Layout Organization ([6],[13],[15],[17],[18],[19]), or "mini-factories within factory": each modular production center (fractal center) can perform almost all processes for all product variants by itself

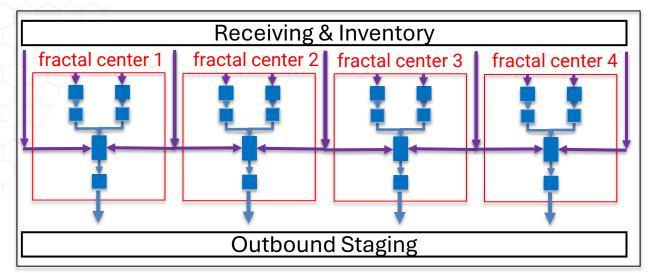

A Use Case

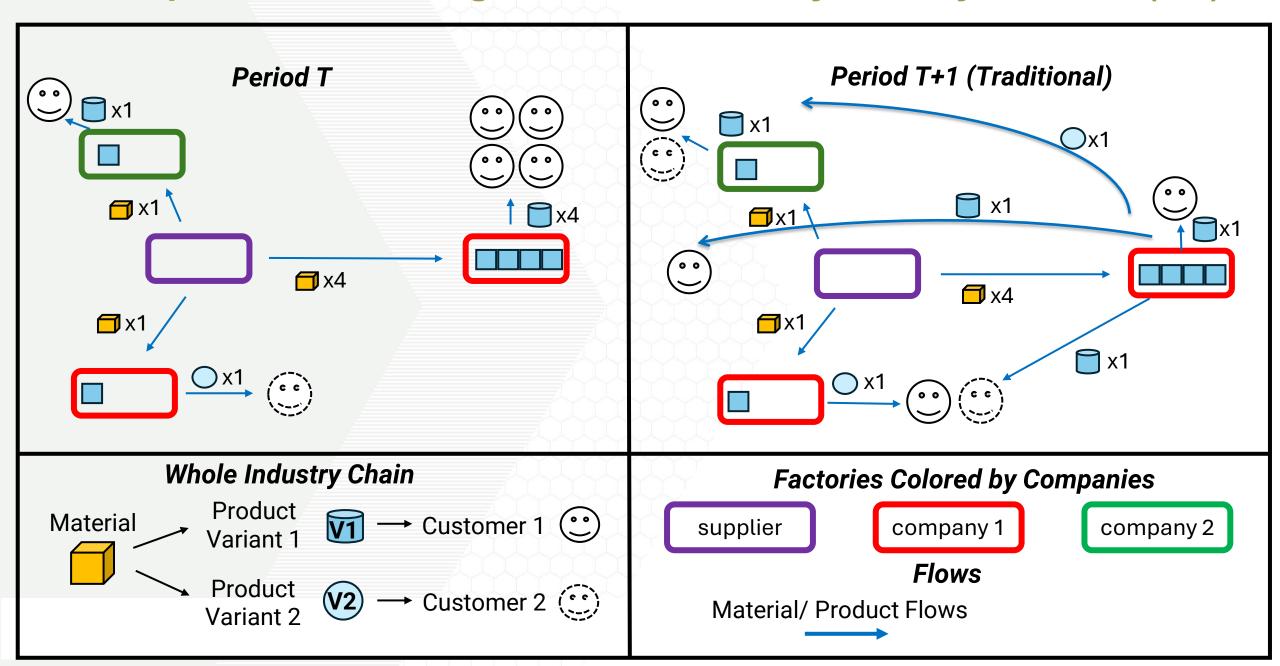
- large and heavy products with variants having similar production requirements.
 - similarity measured by process types required (bolting, screwing, welding, etc.), precedence diagrams, and task durations.
- transportation and storage of materials require much less time and cost than in-process or finished products.
- customers are geographically dispersed, and demand fluctuates over time
- "plug and produce" core equipment.
 - core equipment is defined by its necessity and cost.
- all business participants are PI-certified
- Example: wind turbines, prefabricated construction. ([1], [4])


Example Layout Organization In A Hyperconnected Assembly Factory

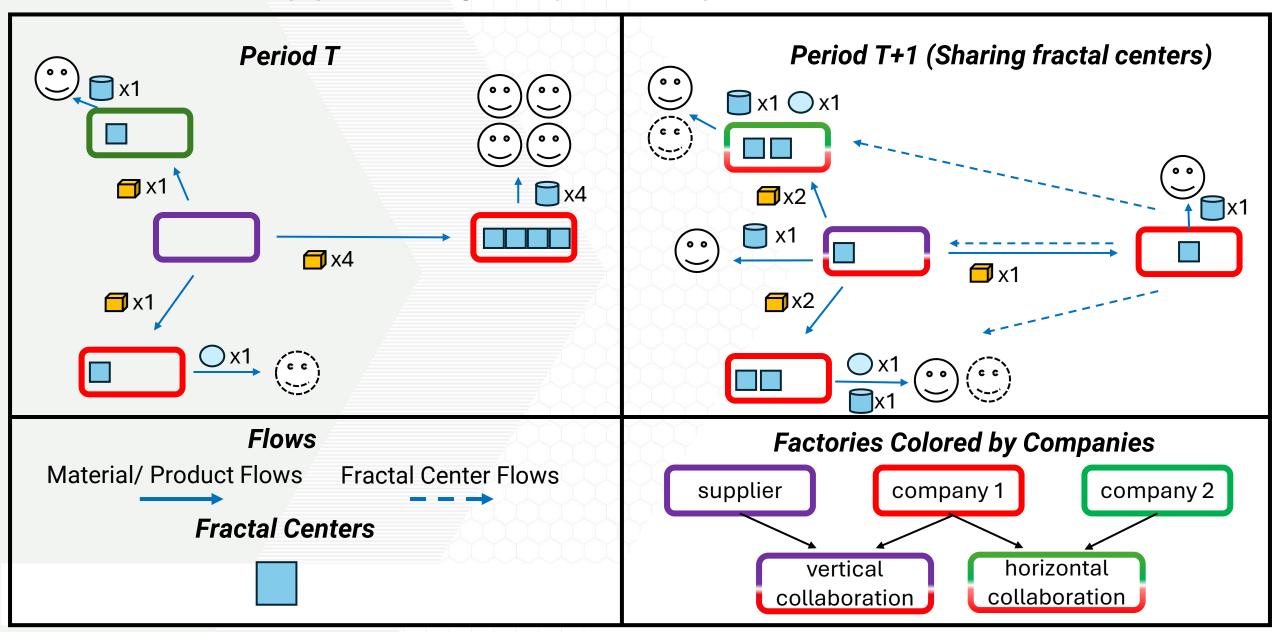
each fractal center has independent product flows with other fractal centers


Factory Throughput: x units/day


Factory Throughput: 3x units/day


Factory Throughput: 2x units/day

Factory Throughput: 4x units/day



Example for FC Sharing in the PI Assembly Factory Network (1/2)

Example for FC Sharing in the PI Assembly Factory Network (2/2)

trade-off between equipment sharing versus product transportation

Conclusion and Future Work

- Scalability achieved by de/activation of fractal centers
- Product Variety and reconfigurability realized by flexible production system.
- Environmental sustainability enhanced by minimizing final product delivery distance and carbon footage in the overall supply chain
- Still, the proposed hyperconnected assembly factory design may incur duplicated equipment and bring more risks during FC sharing.

Research avenues remain:

- 1. multi-standard fractal centers
 - FCs may have different workstations or the same number of workstations but different product flows
 - every FC could still produce any variant of product, but is more efficient for a subset of products.
 - e.g., in automotive factories, some FCs more suitable for sedans, whereas others suitable for vans and trucks
- 2. rigorous comparison with other assembly factory designs is also essential.
 - o fixed factories versus movable factories, shareable equipment versus unshareable equipment
 - other layout organizations
- 3. optimization, Al and other decision-making models are in need for coordinating and scheduling FC sharing
- 4. pilot tests

References

- 1. Alarcon-Gerbier, E., & Buscher, U. (2022). Modular and mobile facility location problems: A systematic review. Computers & Industrial Engineering, 173, 108734.
- 2. Bulgakov, V., Trokhaniak, O., Adamchuk, V., Chernovol, M., Korenko, M., Dukulis, I., & Ivanovs, S. (2022). A study of dynamic loads of a flexible sectional screw conveyor.

 Acta Technologica Agriculturae, 25(3), 131-136.
- 3. Jin, Z., Marian, R. M., & Chahl, J. S. (2023). Achieving batch-size-of-one production model in robot flexible assembly cells. The International Journal of Advanced Manufacturing Technology, 126(5), 2097-2116.
- 4. Kazemi, Z., Rask, J. K., Gomes, C., Yildiz, E., & Larsen, P. G. (2023). Movable factory—A systematic literature review of concepts, requirements, applications, and gaps. Journal of Manufacturing Systems, 69, 189-207.
- 5. Marcotte, S., & Montreuil, B. (2016). *Introducing the concept of hyperconnected mobile production*.
- 6. Montreuil, B. (1999). Fractal layout organization for job shop environments. International Journal of Production Research, 37(3), 501-521.
- 7. Montreuil, B. (2016). Omnichannel Business-to-Consumer Logistics and Supply Chains: Towards Hyperconnected Networks and Facilities.
- 8. Montreuil, B., Meller, R. D., & Ballot, E. (2013). *Physical internet foundations*. Springer.
- 9. Nilsson, A., Danielsson, F., & Svensson, B. (2023). Customization and flexible manufacturing capacity using a graphical method applied on a configurable multi-agent system. Robotics and Computer-Integrated Manufacturing, 79, 102450.
- 10. Rajagopalan, R., & Batra, J. (1975). Design of cellular production systems a graph-theoretic approach. The International Journal of Production Research, 13(6), 567-579.
- 11. Saad, S. M., & Lassila, A. M. (2004). Layout design in fractal organizations. International Journal of Production Research, 42(17), 3529-3550.
- 12. Schmidtke, N., Rettmann, A., & Behrendt, F. (2021). Matrix production systems-requirements and influences on logistics planning for decentralized production structures.
- 13. Shih, Y. C., & Gonçalves Filho, E. V. (2014). A design procedure for improving the effectiveness of fractal layouts formation. AI EDAM, 28(1), 1-26.
- 14. Sternberg, H., & Norrman, A. (2017). The Physical Internet-review, analysis and future research agenda. International Journal of Physical Distribution & Logistics Management, 47(8), 736-762.
- 15. Venkatadri, U., Rardin, R. L., & Montreuil, B. (1997). A design methodology for fractal layout organization. IIE transactions, 29(10), 911-924.
- 16. Vlachos, I., Pascazzi, R. M., Ntotis, M., Spanaki, K., Despoudi, S., & Repoussis, P. (2022). Smart and flexible manufacturing systems using Autonomous Guided Vehicles (AGVs) and the Internet of Things (IoT). International Journal of Production Research, 1-22.
- 17. Askin, R. G., N. H. Lundgren, and F. Ciarallo. "A material flow based evaluation of layout alternatives for agile manufacturing." Progress in material handling research (1997): 71-90.
- 18. Montreuil, B., Venkatadri, U. and Rardin, R.L. (1996) The fractal layout organization for job shop environments. Technical report, Document de travail SORCIIER 96-25, Universite Laval, Quebec, Canada GIK 7P4
- 19. Venkatadri, Uday, Ronald L. Rardin, and Benoît Montreuil. Facility organization and layout design: an experimental comparison for job shops. Université Laval, Direction de la recherche, Faculté des sciences de l'administration, 1996.

Chapter 1

Introduction of Hyperconnected Assembly Factories

Thank you!