
                                  
 

 

User Equilibrium in a Transportation Space-Time Network  
 

L.A.M. Bruijns1, 2, F. Phillipson2 and A. Sangers2 

1. Delft University of Technology, Delft, The Netherlands 
2. TNO, The Hague, The Netherlands 

Corresponding author: frank.phillipson@tno.nl  
 
Abstract: We provide a method to obtain a User Equilibrium in a transportation network, in 
which we transport containers for multiple agents. The User Equilibrium solution is defined 
as the solution wherein each agent can travel via their cheapest paths possible, and no agent 
is harmed by the route choice of other agents. The underlying model used is the Space Time 
Network (STN), in which the travel time of modalities is fixed and independent of the 
occupancy of the network. The System Optimal solution is the solution in which the total costs 
of the network are minimised. An approach is presented to find a toll scheme to create a User 
Equilibrium solution in this tolled STN, while maintaining the System Optimal solution of the 
initial STN. 
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1 Introduction 
In this paper we look at a transportation system where individual agents control logistic units. 
This occurs in Physical Internet and in Synchromodal networks. For an overview of those 
concepts and differences between them, we refer the reader to Ambra et al. (2019). The agents 
in such a network can be logistic service providers or clients controlling the stream of their 
containers, or intelligent containers or other smart logistic units themselves. Looking at the 
planning of such systems. We have to look at two aspects: information and the degree of 
control and optimisation. Both can take either a local view, where only own information is 
known and optimisation done is for an  individual objective. Or a global view, where 
information is available for the entire network and the optimisation is aimed at a shared goal. 
We can distinguish (De Juncker et al., 2017) four different systems in a synchromodal 
framework, see Figure 1. If the information is available globally but every agent only 
optimises their own objective, we call the approach selfish. If the information is available 
globally and the decision is aimed to optimise the entire network, it is called social. If the 
information is only available locally and optimisation is also local, it is a limited approach. 
Lastly, if the decision is aimed at global optimisation with local information, we call it a 
cooperative approach. 

In logistic (service) network planning problems Space-Time Networks (STN) are often used 
for the representation, see for example Andersen and Crainic (2009), Crainic (2000) and Del 
Vecchyo et al. (2018) . On this STN a non-negative integral Minimum Cost Multi-
Commodity Flow problem (MCMCF) is solved to get the overall optimal (social) solution. 
However, if links have capacity constraints and there are multiple agents travelling or sending 
their commodities over the network, some agents may not receive the shortest or most 
economical path. They may be unhappy (in a selfish model) with the total solution, even 
when this solution is the optimal solution for all agents together, a system optimal solution. 
Note that all kind of modalities (or combinations) can be modelled using this approach.  
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To reach a solution in which all agents are satisfied, and do not want to change their paths, we 
would actually need a ‘User Equilibrium’ (UE) solution. However, in most cases this UE is 
overall a worse solution than the overall optimal ‘System Optimal’ (SO) solution. There is an 
expected gain (Roughgarden and Tardos, 2002) for the total system in case of cooperation, 
reaching a system optimal solution. Swamy (2007) shows that selfish, here meaning locally 
optimising, systems have their price: they prove that, in traffic assignment problems, travel 
times induced by selfish agents might be the same as the total travel time incurred by 
optimally routing twice as much traffic and indicate that adding central control or incentives 
gives an overall improvement of the system. However, in networks with high load the 
performance might not suffer too much, as can be found in Peeta and Mahmassani (1995). So 
optimising the total network and then sharing the benefits from an overall optimal solution 
between all agents is beneficial for all. On the other hand, it is not easy, as it requires a mental 
shift to get to give up control.  

  
Fig. 1: Different models of a synchromodal network. 

In this work we propose for the first time a definition of a UE solution in a logistic STN. We 
then provide a method how to change the arc weights of the STN to create and find a UE 
solution in the modified STN, by adding tolls, that equals the system optimal solution. Note 
that the practical implementation is far away, but this can be used to propose a reallocation of 
costs in which the benefit of the social optimal, with respect to the UE in the original STN, is 
shared in a fair way. In terms of Figure 1, we want to get the ‘social’ solution in a ‘selfish’ 
network. 
For the second part, changing the arc weights to create a UE solution that equals the SO 
solution, we propose the following algorithm. The first step in this ‘all toll algorithm’ is to 
calculate the SO based on the path costs of agents travelling from their origin to their 
destination. The next step is to calculate tolls that are added to the paths in the network. These 
tolls are used to adjust the path costs, such that we can offer the agents a choice of tolled 
paths.  
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Now, when the agent gets assigned its cheapest tolled paths, those paths are in the SO solution 
and the solution is UE as well. The solution is a UE because the offered path costs are the 
cheapest option according to the information available for the agent, the new tolled STN.  
In the next section we discuss the literature on User Equilibria and toll systems in traffic 
assignment problems. To the best of the authors’ knowledge no literature exists for UE in 
freight logistic networks. In Section 3 the definition of UE in STN is given and a method is 
presented to find a UE that equals the solution of the system optimal. The method is 
illustrated by two examples in Section 4. We conclude with some remarks and directions for 
future research. 

2 Literature review 
Most of the literature about User Equilibria is based on network congestion, where travel 
times on roads depend on occupancy of travelling arcs, as in traffic assignment problems. Van 
Essen et al. (2016) give a proper review of ways to force a UE into a System Optimum (SO) 
by diffusing travel information to stimulating some agents to travel non-selfishly to achieve 
cheaper total costs. Peeta and Mahmassani (1995) investigate both the SO and the UE Time-
Dependent Traffic Assignment. They show that the more goods have to be transported, the 
more the solutions of the two models differ from each other. Bar-Gera (1999) provides a 
solution method for the UE traffic assignment problem which is computationally efficient, 
memory conserving and an origin-based solution method. Xu et al. (2012) propose a 
stochastic UE for a passenger transport network.  
Miyagi et al. (2012) consider a traffic assignment problem from the view of game theory. 
They assume drivers have knowledge of the network and a Nash Equilibrium (which 
corresponds to a UE) is achievable. Wagner (2014) shows that the existence of a Nash 
Equilibrium is guaranteed under some natural assumptions on the travel time models. Also 
Wang and Yang (2017) show the equality of Nash Equilibrium and UE. Levy et al. (2016) 
consider selfish agents in a traffic assignment problem, and apply properties of game theory 
on traffic problems. They start from finding a UE solution, in which all agents take the best 
route for themselves, based on their route choice experiences in the past. The question then is 
if it is possible to obtain a System Optimal solution, in which agents are still selfish.  

The relationship between the UE and the System Optimal can be examined by the Price of 
Anarchy (Roughgarden, 2006), a system often used in both economics and game theory, that 
measures how the efficiency of a system degrades due to selfish behaviour of its customers. 
Bar-Gera et al. (2012) consider the UE problem with the focus on spreading flow over the 
network (not time-dependent). They also introduce several criteria which can be taken into 
consideration for choosing UE solution methods. Their most important addition to the subject 
is the condition of proportionality: the same proportions apply to all travellers facing a choice 
between a pair of alternative paths, regardless of their origins and destinations.   
Corman et al. (2015) consider the application of multimodal transport to provide a UE 
solution, with the choice of modality based on the wishes of the agents. They assume that 
agents have access to a system for publishing demand and offering transportation 
possibilities. Moreover, they assume everybody has access to truck transportation, so 
transport is always possible, regardless of the fact that other modalities are not available. They 
define every agent as one unit of transport, which has to choose one specific mode for the 
whole travel distance. The goal is to assign agents to modes in such a way that no agent will 
change its departure time and its route (and thus will not change its mode), to provide all 
agents a sufficiently good route. 
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One commonly used approach for creating a UE is by using tolls. Hearn and Ramana (1998) 
make use of a toll pricing system by adding a toll term to the cost function for each arc. They 
also describe the Robinhood formulation, in which the sum of all tolls must be zero, so that 
there is no profit for the system. In this case they calculate the toll after a System Optimal 
solution is found. According to Florian and Hearn (2003), the application of those types of 
toll is hard to implement on traffic networks regarding variable travel times, although the 
selective use of negative tolls to influence route choice of users might have some appeal. 
Yang and Han (2008) investigate the use of tolls with the help of the price of anarchy. Yang 
and Zhang (2008) constructed an anonymous link toll system to add traveller-dependent tolls. 
They concluded that there exist nonnegative links tolls identical to all users to decentralise the 
Wardropian System Optimum as a UE-CN (Cournot-Nash) mixed equilibrium, and the valid 
toll set is made up of a convex set of linear equalities and inequalities. They use nonnegative 
tolls only. Yang and Huang (2005a) state that Value Of Time (VOT) is a very important 
concept in transportation system modelling. The VOT of an order is a constant which denotes 
the importance of that agent. Didi-Biha et al. (2006) also use nonnegative tolls. Their goal is 
to maximise the toll revenue for the highway authority while the users of the network want to 
minimise their travelling costs. They introduce their bi-level programming Toll Optimisation 
Problem, both arc, arc-path and path based.  
Yang and Huang (2005b) proved the existence of a Pareto refunding scheme that returns the 
congestion pricing revenues to all users to make everyone better off.  This Pareto refunding 
scheme refunds class-specific  and OD-specific toll revenue equally to all users in the same 
Origin-Destination pair in the same user class. 
User Equilibria in (multi-) agent environments are also described as consensus seeking 
agents. Work on this is done by Ren and Beard (2005) and Liu and Liu (2012). 

3 User equilibrium in STN 
In this paper we propose the use of tolls on paths within as STN. For convenience we will use 
the terms agent for the controller of (at least) one unit of transport. This agent can send an 
order (multiple units) for transportation within the network and as unit we will say container. 
A Physical Internet system or an other self-organising system with smart units will fit within 
this method. 
 
For each order there may be multiple paths to travel by, within the STN. We propose the 
following definition for a UE within an STN: 
 
Definition 1 (User Equilibrium) A UE in an STN is reached when each agent can use their 
cheapest paths. 
 
This is obviously not always possible when concerning only the initial networks, so we need 
to adjust the initial network using the path tolls to reach this UE. We will assume that agents 
are not familiar with the path costs in the initial STN, they only have knowledge of the tolled 
path costs. In this section, our goal is to find a Path Tolled UE. Our approach is to first find an 
SO solution, and then add tolls to paths, which create a new cost scheme for paths. When we 
offer the STN with the adjusted path costs to the agents, they can selfishly choose routes, and 
the outcome of their path choice will correspond with the path to order assignment within the 
SO. The difference between the two networks provides insight in the offered fairness by the 
solution and can be used to redistribute the gain between the agents. 
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The way of finding tolls which give us a UE solution in an initial SO problem is described in 
Algorithm 1, which is partly based on the solution algorithms used by Hearn and Ramana 
(1998) and Jiang and Mahmassani (2013). The difference with the framework of Hearn and 
Ramana is that we do not define the toll set, because in our approach there is no need to 
obtain this total set. The difference with Jiang and Mahmassani (2013) is that we apply tolls 
on paths instead of updating path assignment. 
The Space-Time Network is a directed graph G = (V,A), consisting of a set of nodes v ∈ V and 
a set of directed arcs a ∈ A. Each arc a is a link between two nodes, an origin node v1 and an 
end node v2: a = (v1,v2), along which a container can travel. We use xa to denote the number 
of units of flow along arc a. An Origin-Destination-pair (OD-pair) w is a pair of two nodes, 
origin location wO and destination location wD, so w = (wO,wD), which is not necessarily an 
arc. The number of containers an order wants to transport from wO to wD is denoted by dw, 
the demand of order w. A path p consists of a sequence of (non-horizontal) adjacent arcs 
between two nodes. In our problem we only consider paths between origin and destination 
nodes. fp denotes the path flow of path p (always integer), with p ∈ Pw, w ∈ W, where 𝒫𝒫𝓌𝓌  is 
the set of all paths for OD-pair w and W is the set of all OD-pairs. The total path set is 
𝒫𝒫 ≔ ⋃ 𝒫𝒫𝑤𝑤∈𝑊𝑊 Rw. The costs of an arc a are denoted by ca and the path costs of path p are 
denoted by 𝐶𝐶𝑤𝑤

𝑝𝑝
R or 𝐶𝐶𝑝𝑝 . The capacity of an arc is denoted by ma and the capacity of a path is 

denoted by mp. The available arcs in a path are denoted by 
 
𝛿𝛿𝑎𝑎𝑎𝑎 = �1 if 𝑎𝑎 is contained in 𝑝𝑝, ∀𝑎𝑎 ∈ 𝐴𝐴,𝑝𝑝 ∈ 𝒫𝒫

0 otherwise  
 

(1) 

After finding the SO solution, we want to find path tolls (𝛽𝛽𝑤𝑤
𝑝𝑝) such that each agent is satisfied 

with its route, and thus a UE is achieved. We only use tolls to obtain both an SO and UE 
solution, so we do not need to make profit on the tolls. We will search for tolls that are as low 
as possible and we require that all tolls payed or received by agents sum up to zero. We will 
now go through the proposed algorithm. Finding the path tolls starts with an SO solution 
(Step 1), solving of which results in the optimal flows fp (Step 2). Now, define the set of paths 
used in the SO solution (Step 3) by ℎ𝑖𝑖𝑖𝑖,𝑤𝑤 ≔ �𝑝𝑝 � 𝑓𝑓𝑝𝑝 > 0,  𝑝𝑝 ∈ 𝒫𝒫𝓌𝓌�, and the sets of all other 

paths (which are not in the SO solution) by hout,w ≔ �𝑝𝑝 � 𝑓𝑓𝑝𝑝 = 0,  𝑝𝑝 ∈ 𝒫𝒫𝓌𝓌�. 
We then solve a Nonlinear Programming Problem NP-β that consists of an objective function 
that minimises the path tolls of a certain path set, and a set of constraints. To realise low tolls 
on paths in hout,w we will minimise the tolls added to paths which are not in the SO solution, 
so we use as the objective function: 

∑ ∑ �𝛽𝛽𝑤𝑤
𝑝𝑝�𝑝𝑝∈ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑤𝑤w∈𝒲𝒲 .  (2) 

To let the tolls sum up to zero we use the constraint: 

∑ 𝛽𝛽𝑤𝑤
𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝∈ℎ𝑖𝑖𝑖𝑖,𝑤𝑤 = 0.  (3) 

So, if there are tolls needed to obtain a UE, there will be one or multiple agents who need to 
pay toll, as well as there are one or multiple agents who receive toll. This last group thus has a 
discount on the routes which we want those agents to take. We do not want the toll received 
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by an agent to be higher than the initial path cost (which would mean that an agent does not 
have to pay, but only receives money for choosing a certain path), so we use the constraints: 
𝐶𝐶𝑤𝑤
𝑝𝑝 + 𝛽𝛽𝑤𝑤

𝑝𝑝 ≥ 0 ∀ 𝑝𝑝 ∈ 𝒫𝒫 ⟺ 𝛽𝛽𝑤𝑤
𝑝𝑝 ≥ −𝐶𝐶𝑤𝑤

𝑝𝑝 ∀ 𝑝𝑝 ∈ 𝒫𝒫. (4) 
 
Now, the NP-β (step 4) consists of the following constraints: 
∑ ∑ 𝛽𝛽𝑤𝑤

𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝∈ℎ𝑖𝑖𝑖𝑖,𝑤𝑤w∈𝒲𝒲 = 0   (5) 

𝛽𝛽𝑤𝑤𝑖𝑖 − 𝛽𝛽𝑤𝑤
𝑗𝑗 ≤ 𝐶𝐶𝑤𝑤

𝑗𝑗 − 𝐶𝐶𝑤𝑤𝑖𝑖  ∀ (𝑖𝑖, 𝑗𝑗),  𝑖𝑖 ∈ ℎ𝑖𝑖𝑖𝑖,𝑤𝑤 ,  𝑗𝑗 ∈ ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑤𝑤    ∀ 𝑤𝑤 ∈ 𝒲𝒲   (6) 
𝛽𝛽𝑤𝑤
𝑝𝑝 ≥ −𝐶𝐶𝑤𝑤

𝑝𝑝                                                                            ∀ 𝑝𝑝 ∈ 𝒫𝒫  
 

 (7) 

where Constraint (5) ensures that all tolls on paths used in the SO solution sum up to zero, 
Constraint (6) ensures the paths used in the SO solution for one order, have equal or lower 
costs than the paths for that order which are not in the SO solution, and Constraint (7) ensures 
no tolled cost can become negative. 
The NP-β (Step 4) is non-linear, which makes this problem hard to solve. We therefore use 
the equivalent linear formulation of the problem: 

min∑ ∑ 𝛾𝛾𝑤𝑤
𝑝𝑝

𝑝𝑝∈ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑤𝑤𝑤𝑤∈𝒲𝒲    (8) 
s.t.   ∑ ∑ 𝛽𝛽𝑤𝑤

𝑝𝑝 𝑓𝑓𝑝𝑝p∈hin,ww∈𝒲𝒲 = 0  (9) 

𝛽𝛽𝑤𝑤𝑖𝑖 − 𝛽𝛽𝑤𝑤
𝑗𝑗 ≤ 𝐶𝐶𝑤𝑤

𝑗𝑗 − 𝐶𝐶𝑤𝑤𝑖𝑖  ∀ (𝑖𝑖, 𝑗𝑗),  𝑖𝑖 ∈ ℎ𝑖𝑖𝑖𝑖,𝑤𝑤 ,  𝑗𝑗 ∈ ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑤𝑤    ∀ 𝑤𝑤 ∈ 𝒲𝒲,  (10) 
𝛽𝛽𝑤𝑤
𝑝𝑝 ≥ −𝐶𝐶𝑤𝑤

𝑝𝑝       ∀ 𝑝𝑝 ∈ 𝒫𝒫, (11) 
𝛽𝛽𝑤𝑤
𝑝𝑝 ≤ 𝛾𝛾𝑤𝑤

𝑝𝑝                                                                               ∀ 𝑝𝑝 ∈ 𝒫𝒫, (12) 
−𝛽𝛽𝑤𝑤

𝑝𝑝 ≤ 𝛾𝛾𝑤𝑤
𝑝𝑝                                                                            ∀ 𝑝𝑝 ∈ 𝒫𝒫, (13) 

𝛾𝛾𝑤𝑤
𝑝𝑝 ≥ 0                                                                                  ∀ 𝑝𝑝 ∈ 𝒫𝒫, (14) 

 
where 𝛾𝛾𝑤𝑤

𝑝𝑝
P

 replaces the absolute value variable |𝛽𝛽𝑤𝑤
𝑝𝑝 |. 

Solving the NP-β (step 5) leads to toll that can be used to change the path costs (Step 6). The 
desired outcome of Algorithm 1 is that the solution to the SO-β problem is equal to the initial 
SO problem (Step 7). The resulting path costs are the only costs that are showed to the agents, 
so the agents do not have any knowledge about the initial STN and those path costs. 

 
 

Algorithm 1 Calculating path tolls 
 

1: Create SO problem: 

min∑ 𝐶𝐶𝑤𝑤
𝑝𝑝

𝑝𝑝∈𝒫𝒫 𝑓𝑓𝑝𝑝   (15) 
𝑠𝑠. 𝑡𝑡.  𝑥𝑥𝑎𝑎 = ∑ 𝛿𝛿𝑎𝑎𝑎𝑎𝑝𝑝∈𝒫𝒫 𝑓𝑓𝑝𝑝         ∀ 𝑎𝑎 ∈ 𝒜𝒜,  (16) 
∑ 𝑓𝑓𝑝𝑝𝑝𝑝∈𝒫𝒫𝓌𝓌 = 𝑑𝑑𝑤𝑤              ∀ w ∈ 𝒲𝒲,  (17) 
𝑥𝑥𝑎𝑎 ≤ 𝑚𝑚𝑎𝑎                         ∀ 𝑎𝑎 ∈ 𝒜𝒜, (18) 
𝑓𝑓𝑝𝑝 ∈ 𝑁𝑁0                           ∀ 𝑝𝑝 ∈ 𝒫𝒫, (19) 
𝑥𝑥𝑎𝑎 ∈ 𝑁𝑁0                           ∀ 𝑎𝑎 ∈ 𝒜𝒜. (20) 

 
2: Solve SO problem, output: path flow vector f. 
3: Create two lists for each order w: 
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ℎ𝑖𝑖𝑖𝑖,𝑤𝑤 = �𝑝𝑝 � 𝑓𝑓𝑝𝑝 > 0,  𝑝𝑝 ∈ 𝒫𝒫𝓌𝓌�, ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑤𝑤 = �𝑝𝑝 � 𝑓𝑓𝑝𝑝 = 0,  𝑝𝑝 ∈ 𝒫𝒫𝓌𝓌�. 
4: Create NP-β: 

min∑ ∑ 𝛾𝛾𝑤𝑤
𝑝𝑝

𝑝𝑝∈ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑤𝑤𝑤𝑤∈𝒲𝒲    (21) 
s. t.∑ ∑ 𝛽𝛽𝑤𝑤

𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝∈ℎ𝑖𝑖𝑖𝑖,𝑤𝑤𝑤𝑤∈𝑊𝑊  =  0  (22) 

𝛽𝛽𝑤𝑤𝑖𝑖 − 𝛽𝛽𝑤𝑤
𝑗𝑗 ≤ 𝐶𝐶𝑤𝑤

𝑗𝑗 − 𝐶𝐶𝑤𝑤𝑖𝑖  ∀ (𝑖𝑖, 𝑗𝑗),  𝑖𝑖 ∈ ℎ𝑖𝑖𝑖𝑖,𝑤𝑤 ,  𝑗𝑗 ∈ ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑤𝑤     ∀ 𝑤𝑤 ∈ 𝒲𝒲, (23) 
𝛽𝛽𝑤𝑤
𝑝𝑝 ≥ −𝐶𝐶𝑤𝑤

𝑝𝑝                                                                             ∀ 𝑝𝑝 ∈ 𝒫𝒫, (24) 
𝛽𝛽𝑤𝑤
𝑝𝑝 ≤ 𝛾𝛾𝑤𝑤

𝑝𝑝                                                                                 ∀ 𝑝𝑝 ∈ 𝒫𝒫, (25) 
−𝛽𝛽𝑤𝑤

𝑝𝑝 ≤ 𝛾𝛾𝑤𝑤
𝑝𝑝                                                                              ∀ 𝑝𝑝 ∈ 𝒫𝒫. (26) 

5: Solve NP-β, output: 𝛽𝛽𝑤𝑤
𝑝𝑝 . 

6: Add tolls 𝛽𝛽𝑤𝑤
𝑝𝑝

P

 to the SO problem, SO-β: 

min∑ �𝐶𝐶𝑤𝑤
𝑝𝑝 + 𝛽𝛽𝑤𝑤

𝑝𝑝�𝑓𝑓𝑝𝑝𝑝𝑝∈𝒫𝒫   (27) 
s.t.  𝑥𝑥𝑎𝑎 = ∑ 𝛿𝛿𝑎𝑎𝑎𝑎𝑝𝑝∈𝒫𝒫 𝑓𝑓𝑝𝑝     ∀ 𝑎𝑎 ∈ 𝒜𝒜,  (28) 
∑ 𝑓𝑓𝑝𝑝𝑝𝑝∈𝒫𝒫𝓌𝓌 = 𝑑𝑑𝑤𝑤                 ∀ 𝑤𝑤 ∈ 𝒲𝒲,  (29) 
𝑥𝑥𝑎𝑎 ≤ 𝑚𝑚𝑎𝑎                             ∀ 𝑎𝑎 ∈ 𝒜𝒜, (30) 
𝑓𝑓𝑝𝑝 ∈ 𝑁𝑁0                               ∀ 𝑝𝑝 ∈ 𝒫𝒫, (31) 
𝑥𝑥𝑎𝑎 ∈ 𝑁𝑁0                              ∀ 𝑎𝑎 ∈ 𝒜𝒜. (32) 
 
7: Solve SO-β problem, output path flow vector f. 

 
 

4 Numerical examples 
We illustrate the algorithm, by solving two examples. In the first example there are three 
locations, V = {1,2,3}, and five time steps. We have two connections between location l = 1 
and l = 2 and two between l = 2 and l = 3. Those arcs all have capacity ma = 1, and ma = ∞ for 
(horizontal) waiting arcs. We have two orders, order 1 and 2 both start at location 1, order 1 
has to go to l = 2 and order 2 to l = 3. Every node column shows a time step and each arc has 
cost ca = 1. The two possible solutions are given in Figure 2, with sw denoting the starting 
point and ew denoting the end point for order w. 

Fig. 2: STN with two orders, first example.. 
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In Figure 2a we see the SO solution, resulting from Step 1 and Step 2, that is the solution 
where the total costs are minimized. Here order 1 is delivered first with cost 𝐶𝐶1𝑎𝑎 = 2 and 
therefore order 2 can only take path bd with cost 𝐶𝐶2𝑏𝑏𝑏𝑏 = 5. In Figure 2b a solution is given 
where both orders pay cost 4, that is path b for order 1, and path ac for order 2. 
We can see that each order has its own preferable solution, that is the one in which they can 
travel via arc a, which is in the cheapest path for both orders. We have path costs 𝐶𝐶1𝑎𝑎 =
2,  𝐶𝐶1𝑏𝑏 = 4,  𝐶𝐶2𝑎𝑎𝑎𝑎 = 4,  𝐶𝐶2𝑎𝑎𝑎𝑎 = 5 and 𝐶𝐶2𝑏𝑏𝑏𝑏 = 5, and the path sets following from the SO solution 
as obtained in Algorithm 1 in Step 3: ℎ𝑖𝑖𝑖𝑖,1 = {𝑎𝑎},  ℎ𝑖𝑖𝑖𝑖,2 = {𝑏𝑏𝑏𝑏},  ℎ𝑜𝑜𝑜𝑜𝑜𝑜,1 = {𝑏𝑏},  ℎ𝑜𝑜𝑜𝑜𝑜𝑜,2 =
{𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎}. 

The tolls given by Step 4 and Step 5 are  𝛽𝛽1𝑎𝑎 = 1,  𝛽𝛽2𝑏𝑏𝑏𝑏 = −1, so all tolls on paths p ∈
⋃ hout,ww∈𝒲𝒲  are zero and so is the objective value of the NP-β. The best solution of the NP-β 
is indeed the solution as obtained from Algorithm 1 Step 5: 𝛽𝛽1𝑎𝑎 = 1,  𝛽𝛽1𝑏𝑏 = 0,  𝛽𝛽2𝑎𝑎𝑎𝑎 = 0,  𝛽𝛽2𝑎𝑎𝑎𝑎 =
0,  𝛽𝛽2𝑏𝑏𝑏𝑏 = −1 and with those tolls we obtain the path costs: 𝐶𝐶𝛽𝛽1𝑎𝑎 = 3,  𝐶𝐶𝛽𝛽1𝑏𝑏 = 4,  𝐶𝐶𝛽𝛽2𝑎𝑎𝑎𝑎 =
4,  𝐶𝐶𝛽𝛽2𝑎𝑎𝑎𝑎 = 5 and 𝐶𝐶𝛽𝛽2𝑏𝑏𝑏𝑏 = 4, Both orders can travel via their cheapest paths, so both an SO and a 
UE are obtained. 
In the second example (Figure 3) we have three orders, all with different demand: d1 = 3 from 
location 1 to 2, d2 = 3 from location 1 to 3 and d3 = 1 from location 2 to 3. An SO solution is 
given in Figure 2, with sw and ew denoting the start end point of order w, respectively. All 
traveling arcs have capacity 1, except for arcs a, c and f, which have capacity ma = mc = mf = 
2, what we graphically show by multiple arcs between a pair of nodes. 

We have path costs 

𝐶𝐶1𝑎𝑎 = 1,   𝐶𝐶1𝑏𝑏 = 2,   𝐶𝐶1𝑐𝑐 = 3,   𝐶𝐶1𝑑𝑑 = 5, 

𝐶𝐶2𝑎𝑎𝑎𝑎 = 2,  𝐶𝐶2
𝑎𝑎𝑎𝑎 = 3,  𝐶𝐶2

𝑎𝑎𝑎𝑎 = 4,  𝐶𝐶2𝑎𝑎ℎ = 5,   𝐶𝐶2
𝑏𝑏𝑏𝑏 = 3,  𝐶𝐶2

𝑏𝑏𝑏𝑏 = 4,  𝐶𝐶2𝑏𝑏ℎ = 5,  𝐶𝐶2
𝑐𝑐𝑐𝑐 = 4,  𝐶𝐶2𝑐𝑐ℎ = 5, 

𝐶𝐶3𝑒𝑒 = 2,    𝐶𝐶3
𝑓𝑓 = 3,    𝐶𝐶3

𝑔𝑔 = 4,    𝐶𝐶3ℎ = 5, 

The path sets following from the SO solution are: 

 , 
 
We see that none of the orders can travel via their cheapest paths, so we need tolls to create a 
UE. Solving the NP-β gives us 𝛽𝛽1𝑎𝑎 = 2 1

3
,  𝛽𝛽1𝑐𝑐 = 1

3
,  𝛽𝛽1𝑑𝑑 = −1 2

3
,  𝛽𝛽2

𝑐𝑐𝑐𝑐 = −1,  𝛽𝛽2𝑎𝑎𝑎𝑎 = 1,  𝛽𝛽3
𝑓𝑓 =

−1,𝛽𝛽1𝑏𝑏 = 1 1
3
. Note that path b ∈ hout,1, so the toll on that path is not actually payed.
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Fig. 3: STN with two orders, second example. 
Table 1: Values hout,w. 

Order 1   2      3    

p ∈ hout,w a b c af ag ah bf bg ch e f g h 
Initial path costs 1 2 3 3 4 5 3 4 5 2 3 4 5 
Tolls 2⅓   1⅓ ⅓ 0 0 0 0 0 0 0 −1 0 0 
Resulting path costs 3⅓ 3⅓ 3⅓ 3 4 5 3 4 5 2 2 4 5 

Table 2: Values hin,w. 

Order 1   2   3 

p ∈ hin,w a c d ae bf cg f 
Initial path costs 1 3 5 2 3 4 3 
Tolls 2⅓ ⅓ -1⅔ 1 0 −1 −1 
Resulting path costs 3⅓ 3⅓ 3⅓ 3 3 3 2 

 

5 Conclusions 
The goal of this work was to provide a method to obtain a User Equilibrium in a logistic, 
intermodal or synchromodal Space Time Network (STN), in which we transport containers 
for multiple agents. We defined a UE as the solution where each agent can send its containers 
via its cheapest paths. We expanded this goal to also finding a solution of assigning containers 
to modes where the solution is System Optimal and by adding tolls a UE simultaneously. The 
first step in all toll algorithms is to calculate the SO based on the path costs of containers 
travelling from their origin to their destination. The next step is to calculate tolls that are 
added to the path or order costs, depending on what kind of tolls we considered. 

When applying path based tolls, we assume agents do not know the path costs of the initial 
network (and thus also do not know their initial cheapest paths). Here the tolls are used to 
adjust the path costs, such that we can offer the agents a choice of tolled paths. Then when the 
agent gets assigned its cheapest tolled paths, those paths are in the SO solution and the 
solution is UE as well. The solution is UE because the offered path costs are the cheapest 
option according to the information available for the agent. We succeeded in finding an 
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approach to obtain both an SO and a UE solution on an STN. An practical note here is that 
using this approach in a real system with selfish agents is not easy. However, we think that 
this method can be used for sharing the benefits coming from a centrally controlled network. 
For further research, we propose to take due dates into account. When we do this, it can be the 
case that orders will arrive too late compared to this due date. We then need to add a penalty 
function to the cost objective function in order to minimise the number of orders arriving too 
late. With the tolls, it is possible to share the penalty costs by all orders who are causing the 
lateness of the delayed orders. Another aspect that should be looked at is fairness of the UE 
solution. In the presented approach a UE is found and the benefit of the SO is shared between 
the agents. We do not know, however, whether this sharing is done in the fairest way. 
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